Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 197(10): 4151-4162, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815446

RESUMO

T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility-mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12-secreting CD11c+ cells and IFN-γ-expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Células-Tronco de Sangue Periférico/fisiologia , Células Th1/imunologia , Condicionamento Pré-Transplante , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Ciclo Celular , Sobrevivência de Enxerto , Hematopoese , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Hematopoéticas/fisiologia , Interferon gama/imunologia , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco de Sangue Periférico/imunologia , Doadores de Tecidos , Quimeras de Transplante
2.
Blood ; 123(18): 2882-92, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591203

RESUMO

Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc(-/-) recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc(-/-) recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc(-/-) recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity.


Assuntos
Sobrevivência de Enxerto/imunologia , Hematopoese/imunologia , Linfócitos T Reguladores/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/efeitos da radiação , Sobrevivência de Enxerto/genética , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/efeitos da radiação , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Doadores de Tecidos , Quimeras de Transplante , Transplante Homólogo
3.
Proc Natl Acad Sci U S A ; 109(15): 5820-5, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22440752

RESUMO

Impaired immunity is a fundamental obstacle to successful allogeneic hematopoietic cell transplantation. Mature graft T cells are thought to provide protection from infections early after transplantation, but can cause life-threatening graft-vs.-host disease. Human CMV is a major pathogen after transplantation. We studied reactivity against the mouse homologue, murine CMV (MCMV), in lethally irradiated mice given allogeneic purified hematopoietic stem cells (HSCs) or HSCs supplemented with T cells or T-cell subsets. Unexpectedly, recipients of purified HSCs mounted superior antiviral responses compared with recipients of HSC plus unselected bulk T cells. Furthermore, supplementation of purified HSC grafts with CD8(+) memory or MCMV-specific T cells resulted in enhanced antiviral reactivity. Posttransplantation lymphopenia promoted massive expansion of MCMV-specific T cells when no competing donor T cells were present. In recipients of pure HSCs, naive and memory T cells and innate lymphoid cell populations developed. In contrast, the lymphoid pool in recipients of bulk T cells was dominated by effector memory cells. These studies show that pure HSC transplantations allow superior protective immunity against a viral pathogen compared with unselected mature T cells. This reductionist transplant model reveals the impact of graft composition on regeneration of host, newly generated, and mature transferred T cells, and underscores the deleterious effects of bulk donor T cells. Our findings lead us to conclude that grafts composed of purified HSCs provide an optimal platform for in vivo expansion of selected antigen-specific cells while allowing the reconstitution of a naive T-cell pool.


Assuntos
Epitopos/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Imunidade/imunologia , Linfócitos T/transplante , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Infecções por Herpesviridae/imunologia , Humanos , Imunização , Subpopulações de Linfócitos/imunologia , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus , Linfócitos T/citologia , Ativação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...