Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 612: 121306, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34813906

RESUMO

Liquid self-nanoemulsifying drug delivery system (L-SNEDDS) of curcumin and quercetin were prepared by dissolving them in isotropic mixture of Labrafil M1944CS®, Capmul MCM®, Tween-80® and Transcutol P®. The prepared L-SNEDDS were solidified using Ganoderma lucidum extract, probiotics and Aerosil-200® using spray drying. These were further converted into pellets using extrusion-spheronization. The mean droplet size and zeta potential of L-SNEDDS were found to be 63.46 ± 2.12 nm and - 14.8 ± 3.11 mV while for solid SNEDDS pellets, these were 72.46 ± 2.16 nm and -38.7 ± 1.34 mV, respectively. The dissolution rate for curcumin and quercetin each was enhanced by 4.5 folds while permeability was enhanced by 5.28 folds (curcumin) and 3.35 folds (quercetin) when loaded into SNEDDS pellets. The Cmax for curcumin and quercetin containing SNEDDS pellets was found 532.34 ± 5.64 ng/mL and 4280 ± 65.67 ng/mL, respectively. This was 17.55 and 3.48 folds higher as compared to their naïve forms. About 50.23- and 5.57-folds increase in bioavailability was observed for curcumin and quercetin respectively, upon loading into SNEDDS pellets. SNEDDS pellets were found stable at accelerated storage conditions. The developed formulation was able to normalize the levels of blood glucose, lipids, antioxidant biomarkers, and tissue architecture of pancreas and liver in streptozotocin induced diabetic rats as compared to their naïve forms.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanopartículas , Probióticos , Reishi , Administração Oral , Animais , Disponibilidade Biológica , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Emulsões , Tamanho da Partícula , Pós/uso terapêutico , Quercetina/uso terapêutico , Ratos , Solubilidade , Estreptozocina
2.
RSC Adv ; 10(42): 24882-24892, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517436

RESUMO

Atmospheric processing of organic solar cells (OSCs) has already emerged and will be a challenge to emulate with the existing market leaders in terms of overall cost reduction and large scale production. However, the presence of defects in the active layer of OSC needs to be identified effectively to minimize the performance degradation involved. In this work, conventional bulk-heterojunction (BHJ) OSCs are fabricated entirely in air having an efficiency (η) up to 4.0% using P3HT and PC61BM as the donor and acceptor, respectively. The devices have exhibited reasonable degradation of performance parameters with aging time and uninterrupted illumination during characterization in ambient air. This visible degradation was as expected because of environmental oxygen and moisture penetration into the photoactive layer through the defects, which can be prevented by immediate encapsulation. Conducting AFM is utilized here to visualize these defects more prominently, which are impossible to see in typical AFM topography. Overall, significant development of atmospheric processing of BHJ OSCs is made, and performance stability is also studied to bring down the fabrication costs in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...