Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 33: 134-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37988215

RESUMO

The optimization of prediction and update operators plays a prominent role in lifting-based image coding schemes. In this paper, we focus on learning the prediction and update models involved in a recent Fully Connected Neural Network (FCNN)-based lifting structure. While a straightforward approach consists in separately learning the different FCNN models by optimizing appropriate loss functions, jointly learning those models is a more challenging problem. To address this problem, we first consider a statistical model-based entropy loss function that yields a good approximation to the coding rate. Then, we develop a multi-scale optimization technique to learn all the FCNN models simultaneously. For this purpose, two loss functions defined across the different resolution levels of the proposed representation are investigated. While the first function combines standard prediction and update loss functions, the second one aims to obtain a good approximation to the rate-distortion criterion. Experimental results carried out on two standard image datasets, show the benefits of the proposed approaches in the context of lossy and lossless compression.

2.
Comput Med Imaging Graph ; 101: 102121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174307

RESUMO

Video quality assessment is a challenging problem having a critical significance in the context of medical imaging. For instance, in laparoscopic surgery, the acquired video data suffers from different kinds of distortion that not only hinder surgery performance but also affect the execution of subsequent tasks in surgical navigation and robotic surgeries. For this reason, we propose in this paper neural network-based approaches for distortion classification as well as quality prediction. More precisely, a Residual Network (ResNet) based approach is firstly developed for simultaneous ranking and classification task. Then, this architecture is extended to make it appropriate for the quality prediction task by using an additional Fully Connected Neural Network (FCNN). To train the overall architecture (ResNet and FCNN models), transfer learning and end-to-end learning approaches are investigated. Experimental results, carried out on a new laparoscopic video quality database, have shown the efficiency of the proposed methods compared to recent conventional and deep learning based approaches.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Bases de Dados Factuais , Diagnóstico por Imagem , Redes Neurais de Computação
3.
IEEE Trans Image Process ; 31: 569-584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890328

RESUMO

Lifting-based wavelet transform has been extensively used for efficient compression of various types of visual data. Generally, the performance of such coding schemes strongly depends on the lifting operators used, namely the prediction and update filters. Unlike conventional schemes based on linear filters, we propose, in this paper, to learn these operators by exploiting neural networks. More precisely, a classical Fully Connected Neural Network (FCNN) architecture is firstly employed to perform the prediction and update. Then, we propose to improve this FCNN-based Lifting Scheme (LS) in order to better take into account the input image to be encoded. Thus, a novel dynamical FCNN model is developed, making the learning process adaptive to the input image contents for which two adaptive learning techniques are proposed. While the first one resorts to an iterative algorithm where the computation of two kinds of variables is performed in an alternating manner, the second learning method aims to learn the model parameters directly through a reformulation of the loss function. Experimental results carried out on various test images show the benefits of the proposed approaches in the context of lossy and lossless image compression.

4.
IEEE Trans Med Imaging ; 38(1): 33-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29994612

RESUMO

The success of minimally invasive interventions and the remarkable technological and medical progress have made endoscopic image enhancement a very active research field. Due to the intrinsic endoscopic domain characteristics and the surgical exercise, stereo endoscopic images may suffer from different degradations which affect its quality. Therefore, in order to provide the surgeons with a better visual feedback and improve the outcomes of possible subsequent processing steps, namely, a 3-D organ reconstruction/registration, it would be interesting to improve the stereo endoscopic image quality. To this end, we propose, in this paper, two joint enhancement methods which operate in the wavelet transform domain. More precisely, by resorting to a joint wavelet decomposition, the wavelet subbands of the right and left views are simultaneously processed to exploit the binocular vision properties. While the first proposed technique combines only the approximation subbands of both views, the second method combines all the wavelet subbands yielding an inter-view processing fully adapted to the local features of the stereo endoscopic images. Experimental results, carried out on various stereo endoscopic datasets, have demonstrated the efficiency of the proposed enhancement methods in terms of perceived visual image quality.


Assuntos
Endoscopia , Processamento de Imagem Assistida por Computador/métodos , Análise de Ondaletas , Algoritmos , Animais , Bases de Dados Factuais , Humanos , Fígado/diagnóstico por imagem , Suínos
5.
Biomed Eng Online ; 17(1): 139, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340594

RESUMO

BACKGROUND: In laparoscopic surgery, image quality can be severely degraded by surgical smoke, which not only introduces errors for the image processing algorithms (used in image guided surgery), but also reduces the visibility of the observed organs and tissues. To overcome these drawbacks, this work aims to remove smoke in laparoscopic images using an image preprocessing method based on a variational approach. METHODS: In this paper, we present the physical smoke model where the degraded image is separated into two parts: direct attenuation and smoke veil and propose an efficient variational-based desmoking method for laparoscopic images. To estimate the smoke veil, the proposed method relies on the observation that smoke veil has low contrast and low inter-channel differences. A cost function is defined based on this prior knowledge and is solved using an augmented Lagrangian method. The obtained smoke veil is then subtracted from the original degraded image, resulting in the direct attenuation part. Finally, the smoke free image is computed using a linear intensity transformation of the direct attenuation part. RESULTS: The performance of the proposed method is evaluated quantitatively and qualitatively using three datasets: two public real smoked laparoscopic datasets and one generated synthetic dataset. No-reference and reduced-reference image quality assessment metrics are used with the two real datasets, and show that the proposed method outperforms the state-of-the-art ones. Besides, standard full-reference ones are employed with the synthetic dataset, and indicate also the good performance of the proposed method. Furthermore, the qualitative visual inspection of the results shows that our method removes smoke effectively from the laparoscopic images. CONCLUSION: All the obtained results show that the proposed approach reduces the smoke effectively while preserving the important perceptual information of the image. This allows to provide a better visualization of the operation field for surgeons and improve the image guided laparoscopic surgery procedure.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Laparoscopia , Fumaça , Cirurgia Assistida por Computador , Algoritmos
6.
Appl Opt ; 54(1): A98-109, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967029

RESUMO

Holographic data play a crucial role in recent three-dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes. In this paper, we focus on the shifted distance information, obtained by the phase-shifting algorithm, where two sets of difference data need to be encoded. More precisely, a nonseparable vector lifting scheme is investigated in order to exploit the two-dimensional characteristics of the holographic contents. Simulations performed on different digital holograms have shown the effectiveness of the proposed method in terms of bitrate saving and quality of object reconstruction.

7.
IEEE Trans Image Process ; 23(1): 137-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144661

RESUMO

In this paper, we develop an efficient bit allocation strategy for subband-based image coding systems. More specifically, our objective is to design a new optimization algorithm based on a rate-distortion optimality criterion. To this end, we consider the uniform scalar quantization of a class of mixed distributed sources following a Bernoulli-generalized Gaussian distribution. This model appears to be particularly well-adapted for image data, which have a sparse representation in a wavelet basis. In this paper, we propose new approximations of the entropy and the distortion functions using piecewise affine and exponential forms, respectively. Because of these approximations, bit allocation is reformulated as a convex optimization problem. Solving the resulting problem allows us to derive the optimal quantization step for each subband. Experimental results show the benefits that can be drawn from the proposed bit allocation method in a typical transform-based coding application.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Interpretação Estatística de Dados , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
8.
IEEE Trans Image Process ; 18(11): 2463-75, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19586821

RESUMO

Many research efforts have been devoted to the improvement of stereo image coding techniques for storage or transmission. In this paper, we are mainly interested in lossy-to-lossless coding schemes for stereo images allowing progressive reconstruction. The most commonly used approaches for stereo compression are based on disparity compensation techniques. The basic principle involved in this technique first consists of estimating the disparity map. Then, one image is considered as a reference and the other is predicted in order to generate a residual image. In this paper, we propose a novel approach, based on vector lifting schemes (VLS), which offers the advantage of generating two compact multiresolution representations of the left and the right views. We present two versions of this new scheme. A theoretical analysis of the performance of the considered VLS is also conducted. Experimental results indicate a significant improvement using the proposed structures compared with conventional methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...