Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400067, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837278

RESUMO

Free crystal space in more than 600 chalcogenide structures taken out from the ICSD has been theoretically analyzed. As a result, wide voids and channels accessible for Na+-ion migration were found in 236 structures. Among them, 165 compounds have not been described in the literature as Na+-conducting materials. These materials have been subjected to stepwise quantitative calculations. The bond valence site energy method has enabled the identification of 57 entries as the most promising ion conductors in which the Na+-ion migration energy (Em) is less than 0.55 eV for 2D or 3D diffusion. The kinetic Monte-Carlo method has been carried out for these substances; as a result, resulting in nine of the most prospective compounds with Na+-ionic conductivity Ϭ≥10-4 S cm-1 at room temperature were selected, for which the density functional theory calculations have been performed yielding six best candidates. Additionally, a logarithmic relationship was established between the values of Em and the diffusion channel radii as well as a linear relationship between Ϭ and the void radius.

2.
Phys Chem Chem Phys ; 26(9): 7772-7782, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374775

RESUMO

The conductive properties of fluorite-like structures KLn4Mo3O15F (Ln = La, Pr, Nd: KLM, KPM, KNM) have been studied theoretically and experimentally. Theoretical studies included the geometrical-topological analysis of voids and channels available for migration of working ions; bond valence site energy calculations of the oxygen ions' migration energy; quantum-chemical calculations for the estimation of the oxygen vacancies formation energy. Experimental measurements of conductivity were made using impedance spectroscopy and as a function of oxygen partial pressure. The total conductivity was ∼10-3 S cm-1 for KLM and ∼10-2 S cm-1 for KPM and KNM at 800 °C. Measurements with changes in partial pressure proved the mixed nature of electric transport in KLM, KPM, and KNM phases, with predominantly ionic conductivity. The measured ion transference numbers in air reached approximately 0.9 at 800 °C for the KPM and KNM ceramics. Also, evaluated proton transfer numbers were less than 10%, indicating a small contribution to the total conductivity.

3.
Phys Chem Chem Phys ; 26(3): 2622-2628, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173389

RESUMO

The results of high-throughput screening of the inorganic crystal structure database for new promising Ca2+-, Mg2+-, Zn2+- and Al3+-ion conducting ternary and quaternary sulfides, selenides, and tellurides are presented (∼1500 compounds). A geometrical-topological approach based on the Voronoi partition was initially used and yielded 104 compounds, which were unknown as conductors with possible cation migration. All compounds were passed through the bond valence site energy analysis to determine the migration energy Em. Furthermore, we established the logarithmic dependencies of Em on the geometrical parameters of the migration pathways. As a result, 16 out of 104 structures were filtered out as promising conductors. Finally, density functional theory simulations yielded the 11 most prospective compounds with Em < 1.0 eV. Among them, we found a novel class of ionic conductors with the La3CuSiS7 structure, for which ab initio molecular dynamic calculations were performed, revealing diffusion coefficients of ∼10-7 cm2 s-1 and ionic conductivity of ∼10-2 S cm-1 at 300 K.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 3): 198-206, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070863

RESUMO

A novel approach is proposed for the description of possible reconstructive solid-state transformations, which is based on the analysis of topological properties of atomic periodic nets and relations between their subnets and supernets. The concept of a region of solid-state reaction that is the free space confined by a tile of the net tiling is introduced. These regions (tiles) form the reaction zone around a given atom A thus unambiguously determining the neighboring atoms that can interact with A during the transformation. The reaction zone is independent of the geometry of the crystal structure and is determined only by topological properties of the tiles. The proposed approach enables one to drastically decrease the number of trial structures when modeling phase transitions in solid state or generating new crystal substances. All crystal structures which are topologically similar to a given structure can be found by the analysis of its topological vicinity in the configuration space. Our approach predicts amorphization of the phase after the transition as well as possible single-crystal-to-single-crystal transformations. This approach is applied to generate 72 new carbon allotropes from the initial experimentally determined crystalline carbon structures and to reveal four allotropes, whose hardness is close to diamond. Using the tiling model it is shown that three of them are structurally similar to other superhard carbon allotropes, M-carbon and W-carbon.

5.
Front Chem ; 7: 268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119122

RESUMO

The expansion of renewable energy and the growing number of electric vehicles and mobile devices are demanding improved and low-cost electrochemical energy storage. In order to meet the future needs for energy storage, novel material systems with high energy densities, readily available raw materials, and safety are required. Currently, lithium and lead mainly dominate the battery market, but apart from cobalt and phosphorous, lithium may show substantial supply challenges prospectively, as well. Therefore, the search for new chemistries will become increasingly important in the future, to diversify battery technologies. But which materials seem promising? Using a selection algorithm for the evaluation of suitable materials, the concept of a rechargeable, high-valent all-solid-state aluminum-ion battery appears promising, in which metallic aluminum is used as the negative electrode. On the one hand, this offers the advantage of a volumetric capacity four times higher (theoretically) compared to lithium analog. On the other hand, aluminum is the most abundant metal in the earth's crust. There is a mature industry and recycling infrastructure, making aluminum very cost efficient. This would make the aluminum-ion battery an important contribution to the energy transition process, which has already started globally. So far, it has not been possible to exploit this technological potential, as suitable positive electrodes and electrolyte materials are still lacking. The discovery of inorganic materials with high aluminum-ion mobility-usable as solid electrolytes or intercalation electrodes-is an innovative and required leap forward in the field of rechargeable high-valent ion batteries. In this review article, the constraints for a sustainable and seminal battery chemistry are described, and we present an assessment of the chemical elements in terms of negative electrodes, comprehensively motivate utilizing aluminum, categorize the aluminum battery field, critically review the existing positive electrodes and solid electrolytes, present a promising path for the accelerated development of novel materials and address problems of scientific communication in this field.

6.
Sci Rep ; 9(1): 6007, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979949

RESUMO

Reconstructive solid-state transformations are followed by significant changes in the system of chemical bonds, i.e. in the topology of the substance. Understanding these mechanisms at the atomic level is crucial for proper explanation and prediction of chemical reactions and phase transitions in solids and, ultimately, for the design of new materials. Modeling of solid-state transitions by geometrical, molecular dynamics or quantum-mechanical methods does not account for topological transformations. As a result, the chemical nature of the transformation processes are overlooked, which limits the predictive power of the models. We propose a universal model based on network representation of extended structures, which treats any reorganization in the solid state as a network transformation. We demonstrate this approach rationalizes the configuration space of the solid system and enables prediction of new phases that are closely related to already known phases. Some new phases and unclear transition pathways are discovered in example systems including elementary substances, ionic compounds and molecular crystals.

7.
Chemistry ; 25(36): 8623-8629, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31012511

RESUMO

We have created a set of crystalline model structures exhibiting straight lines of Al3+ connected to chalcogenides (O2- , S2- , and Se2- ) connected to metal cations of varying valence (Sr2+ , Y3+ , Zr4+ , Nb5+ , and Mo6+ ). They were relaxed with density functional theory computations and analysed by Bader partitioning. As Al3+ ions are supposed to strongly interact with their atomic environment, we studied the electron density topology induced by higher-valent cations in the extended chemical neighbourhood of Al. In fact, we found a general decrease of ionic charges and an increasing displacement of the chalcogenides towards higher-valent ions for the heavier chalcogens. Therefore, we comprehensively screened S- and Se-containing compounds for candidates theoretically exhibiting low migration barriers for Al3+ ions by using Voronoi-Dirichlet partitioning and bond valence site energy calculations. The basis for this search is the Inorganic Crystal Structure Database. Indeed, we could extract six promising candidates with low Al3+ migration barriers. which are even lower than the barriers for any other element inside of these materials. This will encourage efforts towards preparing suitable Al3+ conductors.

8.
J Chem Phys ; 149(11): 114702, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30243276

RESUMO

By means of ab initio computations and the global minimum structure search method, we have investigated structural, mechanical, and electronic properties of D-carbon, a crystalline orthorhombic sp3 carbon allotrope (space group Pmma [ D2h5 ] with 6 atoms per cell). Total-energy calculations demonstrate that D-carbon is energetically more favorable than the previously proposed T6 structure (with 6 atoms per cell) as well as many others. This novel phase is dynamically, mechanically, and thermally stable at zero pressure and more stable than graphite beyond 63.7 GPa. D-carbon is a semiconductor with a bandgap of 4.33 eV, less than diamond's gap (5.47 eV). The simulated X-ray diffraction pattern is in satisfactory agreement with previous experimental data in chimney or detonation soot, suggesting its possible presence in the specimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...