Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 352: 114011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35176273

RESUMO

Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer a wealth of opportunities to investigate gait network impairments at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. We conclude that future research should incorporate behavioral tests with increased cognitive demands to potentially uncover episodic gait impairments in rodents. Additionally, we expect that basic research will benefit from the implementation of evolving signal processing strategies from clinical research. This coevolution of translational research may contribute to the future optimization of gait therapy in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Roedores
2.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672983

RESUMO

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Assuntos
Regulação da Temperatura Corporal/genética , Inibição Neural/genética , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/genética , Sensação Térmica/genética , Animais , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Interocepção/fisiologia , Camundongos , Camundongos Knockout , Área Pré-Óptica/citologia , Sinapses , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...