Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 255: 110008, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797243

RESUMO

Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.


Assuntos
Sinais (Psicologia) , Relação Dose-Resposta a Droga , Ketamina , Núcleo Accumbens , Ratos Long-Evans , Reforço Psicológico , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Feminino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ratos , Caracteres Sexuais , Autoadministração , Condicionamento Operante/efeitos dos fármacos
2.
Alcohol ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38290696

RESUMO

Ceftriaxone is an antibiotic that increases central nervous system (CNS) protein expression of the glutamate transporters GLT-1 and xCT and ameliorates pathological behaviors in rodent models of neurological disease and substance use disorder. However, little ceftriaxone passes through the blood-brain-barrier, the CNS binding partner of ceftriaxone is unknown, and ceftriaxone does not consistently upregulate GLT-1 and xCT in cell culture. Ceftriaxone alters the gut microbiome composition in rodents and humans, and the microbiome-gut-brain axis regulates drug-seeking. Thus, here we test the hypothesis that ceftriaxone reduces alcohol intake while ameliorating alcohol-induced disruption of the gut microbiome composition. Male and female Sprague-Dawley rats received intermittent access to alcohol (IAA) while controls received access to only water. Following 17 IAA sessions, ceftriaxone/vehicle treatment was given for 5 days. Analysis of the gut microbiome composition was assessed by 16S rRNA gene amplicon sequencing conducted on fecal pellets collected prior to and after alcohol consumption and following ceftriaxone treatment. Male rats displayed escalated alcohol intake and preference over the course of the 17 sessions; however, total alcohol intake did not differ between the sexes. Ceftriaxone reduced alcohol intake and preference in male and female rats. While alcohol affected a diverse set of amplicon sequencing variants (ASV), ceftriaxone markedly reduced the diversity of microbial communities reflected by a blooming of the Enterococcaceae family. The remaining effects of ceftriaxone, however, encompassed families both affected and unaffected by prior alcohol drinking and highlight the Ruminococcaceae and Muribaculaceae families as bidirectionally modulated by alcohol and ceftriaxone. Altogether, our study confirms that ceftriaxone reduces alcohol intake in rats and partially reverses alcohol-induced dysbiosis.

3.
J Neurosci Methods ; 401: 110003, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918446

RESUMO

Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.


Assuntos
Projetos de Pesquisa , Caracteres Sexuais , Animais , Masculino , Feminino , Reprodutibilidade dos Testes , Fatores Sexuais , Tamanho da Amostra
4.
BMC Genomics ; 23(1): 679, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183097

RESUMO

BACKGROUND: The importance of fathers' engagement in care and its critical role in the offspring's cognitive and emotional development is now well established. Yet, little is known on the underlying neurobiology due to the lack of appropriate animal models. In the socially monogamous and bi-parental prairie vole (Microtus ochrogaster), while 60-80% of virgin males show spontaneous paternal behaviors (Paternal), others display pup-directed aggression (Attackers). Here we took advantage of this phenotypic dichotomy and used RNA-sequencing in three important brain areas to characterize gene expression associated with paternal behaviors of Paternal males and compare it to experienced Fathers and Mothers. RESULTS: While Paternal males displayed the same range and extent of paternal behaviors as experienced Fathers, we observed structure-specific transcriptomic differences between parental behaviors phenotypes. Using differential expression, gene set expression, as well as co-expression network analyses, we found that phenotypic differences between Paternal males and Attackers were mainly reflected by the lateral septum (LS), and to a lower extent, the nucleus accumbens (NAc), transcriptomes. In the medial preoptic area (MPOA), the profiles of gene expression mainly reflected differences between females and males regardless of their parental behaviors phenotype. Functional enrichment analyses of those gene sets associated with Paternal males or Attackers in the LS and the NAc revealed the involvement of processes related to the mitochondria, RNA translation, protein degradation processes, as well as epigenetic regulation of gene expression. CONCLUSIONS: By leveraging the natural phenotypic differences in parental behaviors in virgin male prairie voles alongside fathers and mothers, we identified a marked structure- and phenotype-specific pattern of gene expression associated with spontaneous paternal behaviors independently from fatherhood and pair-bonding. The LS transcriptome related to the mitochondria, RNA translation, and protein degradation processes was thus highlighted as a primary candidate associated with the spontaneous display of paternal behaviors. Altogether, our observations further characterize the behavioral and transcriptomic signature of parental behaviors in the socially monogamous prairie vole and lay the groundwork to further our understanding of the molecular underpinnings of paternal behavior.


Assuntos
Comportamento Paterno , Transcriptoma , Animais , Arvicolinae/genética , Epigênese Genética , Feminino , Pradaria , Masculino , Comportamento Paterno/fisiologia , RNA/metabolismo
5.
Data Brief ; 43: 108338, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712367

RESUMO

In this study, we collected electrophysiological data from acute hippocampal slices of male and female Sprague Dawley rats. Rats were exposed to social isolation rearing and then acutely treated with various doses of ketamine in order to rescue hippocampal plasticity deficits induced by isolation stress. We used two different approaches to study neuronal plasticity: Long-Term Potentiation (LTP) which is a well-established cellular model for memory and Paired-Pulse Facilitation (PPF) which is short-term of presynaptic plasticity. The aim of this article is to offer more experimental details about out LTP and PPF procedures.

6.
Sci Rep ; 12(1): 1820, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110693

RESUMO

Numerous emotional and cognitive processes mediated by the hippocampus present differences between sexes and can be markedly influenced by hormonal status in males and females of several species. In rodents, the dorsal hippocampus (dHPC) is known to contribute to the rapid antidepressant actions of the NMDA receptor antagonist ketamine. We and others have demonstrated a greater sensitivity to the fast-acting antidepressant ketamine in female versus male rats that is estrogen- and progesterone-dependent. However, the underlying mechanisms remain unclear. Using an acute low dose (2.5 mg/kg) of ketamine that is behaviorally effective in female but not male rats, a label-free phosphoproteomics approach was employed to identify ketamine-induced changes in signaling pathway activation and phosphoprotein abundance within the dHPC of intact adult male rats and female rats in either diestrus or proestrus. At baseline, males and females showed striking dissimilarities in the dHPC proteome and phosphoproteome related to synaptic signaling and mitochondrial function-differences also strongly influenced by cycle stage in female rats. Notably, phosphoproteins enriched in PKA signaling emerged as being both significantly sex-dependent at baseline and also the primary target of ketamine-induced protein phosphorylation selectively in female rats, regardless of cycle stage. Reduced phosphoprotein abundance within this pathway was observed in males, suggesting bi-directional effects of low-dose ketamine between sexes. These findings present biological sex and hormonal milieu as critical modulators of ketamine's rapid actions within this brain region and provide greater insight into potential translational and post-translational processes underlying sex- and hormone-dependent modulation of ketamine's therapeutic effects.


Assuntos
Ciclo Estral/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Fosfoproteínas/metabolismo , Proteoma , Animais , Feminino , Hipocampo/metabolismo , Masculino , Fosforilação , Mapas de Interação de Proteínas , Proteômica , Ratos Sprague-Dawley , Caracteres Sexuais
7.
Biol Psychiatry ; 91(1): 141-151, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549315

RESUMO

BACKGROUND: The ability to form enduring social bonds is characteristic of human nature, and impairments in social affiliation are central features of severe neuropsychiatric disorders including autism spectrum disorder and schizophrenia. Owing to its ability to form long-term pair-bonds, the socially monogamous prairie vole has emerged as an excellent model to study the neurobiology of social attachment. Despite the enduring nature of the bond, however, surprisingly few genes have been implicated in the pair-bonding process in either sex. METHODS: Male and female prairie voles (Microtus ochrogaster) were cohabitated with an opposite-sex partner for 24 hours or 3 weeks, and transcriptomic regulations in the nucleus accumbens were measured by RNA sequencing. RESULTS: We found sex-specific response patterns despite similar behavioral indicators of pair-bond establishment. Indeed, 24 hours of cohabitation with an opposite-sex partner induced widespread transcriptomic changes that remained sustained to some extent in females after 3 weeks but returned to baseline before a second set of regulations in males. This led to a highly sexually biased nucleus accumbens transcriptome at 3 weeks related to processes such as neurotransmission, protein turnover, and DNA transcription. In particular, we found sex-specific alterations of mitochondrial dynamics following cohabitation, with a shift toward fission in males. CONCLUSIONS: In addition to identifying the genes, networks, and pathways involved in the pair-bonding process in the nucleus accumbens, our work illustrates the vast extent of sex differences in the molecular mechanisms underlying pair-bonding in prairie voles and paves the way to further our understanding of the complex social bonding process.


Assuntos
Transtorno do Espectro Autista , Transcriptoma , Animais , Arvicolinae , Feminino , Pradaria , Humanos , Masculino , Ligação do Par , Comportamento Sexual Animal , Comportamento Social
8.
Neurosci Lett ; 766: 136301, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688854

RESUMO

Chronic social isolation stress (SIS) induces lasting negative effects on the brain, including memory deficits, cognitive impairments, and mood alterations such as depression and anxiety. All these symptoms, at least in part, reflect reduced hippocampal function. In both clinical and preclinical studies, subanesthetic doses of the NMDA receptor antagonist, ketamine (KET), was shown to have rapid and lasting antidepressant effects. Animal studies have shown that biological sex and levels of gonadal hormones alter the behavioral effects of KET, with ovarian hormones increasing sensitivity to the antidepressant-like effects of KET. Since the hippocampus plays a key role in mediating some of the effects of SIS, and considering that KET at low doses has been shown to rescue some of the behavioral deficits of isolation rearing this study aimed to assess the effects of isolation stress on pre- and post-synaptic hippocampal functions in male and female rats reared in SIS, as well as determine whether some of the physiological deficits can be rescued with a single injection of sub-anesthetic doses of KET. To do this, Sprague-Dawley rats were raised from weaning in either social isolation or with same-sex cage mate for 5 to 7 weeks. Male and female rats in either diestrus of proestrus received a single injection of KET (0, 2.5, or 5.0 mg/kg) three hours prior to termination and collection of acute hippocampal slices for ex vivo electrophysiological field potential recordings. Long-term potentiation (LTP) and paired pulse facilitation (PPF) outputs were assessed in a canonical CA3-CA1 dorsal hippocampal circuit. Our data show that SIS inhibits hippocampal LTP without affecting PPF in male rats, an effect that was rescued by KET. In female rats, isolation stress did not alter LTP, but did reduce PPF - especially when females were tested in diestrus-, an effect that was rescued by KET at the highest dose. Our data thus suggest sex differences in the contribution of pre-and postsynaptic hippocampal compartments in response to stress and KET.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Plasticidade Neuronal/fisiologia , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Animais , Feminino , Hipocampo/fisiopatologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Isolamento Social/psicologia
9.
Curr Top Behav Neurosci ; 54: 283-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34595741

RESUMO

Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.


Assuntos
Metilação de DNA , Epigênese Genética , Agressão/fisiologia , Animais , Metilação de DNA/genética , Código das Histonas , RNA não Traduzido
10.
Neuroscience ; 466: 58-76, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915201

RESUMO

Genes and environment interact during development to alter gene expression and behavior. Parental morphine exposure before conception has devastating effects on the offspring. In the present study, we evaluated the role of maternal care in the intergenerational effect of maternal morphine exposure. Female rats received morphine or saline for ten days and were drugfree for another ten days. Thereafter, they were allowed to mate with drug-naïve male rats. When pups were born, they were cross-fostered to assess the contribution of maternal care versus morphine effects on the offspring. Adult male offspring were examined for anxiety-like behavior, spatial memory, and obsessive-compulsive-like behavior. To determine the mechanisms underlying the observed behavioral changes, protein levels of acetylated histone H3, BDNF, Trk-B, NMDA subunits, p-CREB, and 5-HT3R were measured in the brain. Our results indicate that maternal caregiving is impaired in morphine-abstinent mothers. Interestingly, maternal care behaviors were also affected in drug-naïve mothers that raised offspring of morphine-exposed mothers. In addition, the offspring of morphine abstinent and non-drug dependent mothers, when raised by morphine abstinent mothers, exhibited more anxiety, obsessive-compulsive behaviors and impaired spatial memory. These altered behaviors were associated with alterations in the levels of the above-mentioned proteins. These data illustrate the intergenerational effects of maternal morphine exposure on offspring behaviors. Moreover, exposure to morphine before gestation not only affects maternal care and offspring behavior, but also has negative consequences on behaviors and protein expression in adoptive mothers of affected offspring.


Assuntos
Morfina , Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade , Comportamento Compulsivo , Feminino , Humanos , Masculino , Exposição Materna , Gravidez , Ratos , Memória Espacial
11.
Front Behav Neurosci ; 14: 593860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362485

RESUMO

Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine's therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine's antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol's addictive properties as well as ketamine's therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.

12.
Physiol Rep ; 8(22): e14646, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33230976

RESUMO

Effective communication between the mammalian hippocampus and neocortex is essential to certain cognitive-behavioral tasks critical to survival in a changing environment. Notably, functional synchrony between local field potentials (LFPs) of the ventral hippocampus (vHPC) and the medial prefrontal cortex (mPFC) within the theta band (4-12 Hz) underlies innate avoidance behavior during approach-avoidance conflict tasks in male rodents. However, the physiology of vHPC-mPFC communications in females remains unestablished. Furthermore, little is known about how mPFC subdivisions functionally interact in the theta band with hippocampal subdivisions in both sexes in the absence of task demand. Given the established roles of biological sex and gonadal hormone status on innate avoidance behaviors and neuronal excitability, here, we characterize the effects of biological sex and female estrous stage on hippocampal-prefrontal (HPC-mPFC) theta signaling in freely moving female and male rats. LFPs from vHPC, dorsal hippocampus (dHPC), mPFC-prelimbic (PrL), and mPFC-infralimbic (IL) were simultaneously recorded during spontaneous exploration of a familiar arena. Data suggest that theta phase and power in vHPC preferentially synchronize with PrL; conversely, dHPC and IL preferentially synchronize. Males displayed greater vHPC-PrL theta synchrony than females, despite similar regional frequency band power and inter-regional coherence. Additionally, several significant estrous-linked changes in HPC-mPFC theta dynamics were observed. These findings support the hypothesis that HPC-mPFC theta signaling is sensitive to both biological sex and female estrous stage. These findings establish novel research avenues concerning sex as a biological variable and effects of gonadal hormone status on HPC-mPFC network activity as it pertains to threat evaluation biomarkers.


Assuntos
Ciclo Estral/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Ritmo Teta , Animais , Aprendizagem da Esquiva , Comportamento Exploratório , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
13.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31740575

RESUMO

Clinical and preclinical studies have shown that ketamine, an NMDA receptor antagonist, has promising therapeutic value for the treatment of alcohol use disorder (AUD). However, the maintenance of remission will ultimately require repeated infusions of ketamine, which may lead to abuse potential and may hinder its therapeutic benefits. It is therefore crucial to assess the effects of repeated treatments with ketamine on alcohol intake. Accordingly, this study aimed to examine in both sexes how individual differences in alcohol intake alter ketamine self-administration and how ketamine self-administration will alter subsequent alcohol-drinking behaviors. Male and female rats intermittently drank alcohol or water for 10 weeks and were divided into high- or low-alcohol intake groups prior to ketamine self-administration. Rats self-administered ketamine under fixed and progressive ratio schedules of reinforcement from week 4 to 7, and the incubation of ketamine craving was examined from week 8 to 10. To investigate structural plasticity in a brain region involved in reward, nucleus accumbens dendritic spine morphology was examined. Our results show that high alcohol intake in male rats attenuated ketamine self-administration, whereas in female rats high alcohol intake enhanced motivation to self-administer ketamine. Ketamine reduced alcohol intake in high-alcohol male rats but increased it in low-alcohol female rats. Incubation of ketamine craving developed in all groups except low-alcohol females. Three weeks of abstinence from ketamine was associated with increased mushroom spines in all groups except the high-alcohol male group. Overall, these data suggest that ketamine as a treatment for AUD may benefit male subjects, but not female subjects, and warrants further investigation before use as a therapeutic agent.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Espinhas Dendríticas/efeitos dos fármacos , Etanol/administração & dosagem , Individualidade , Ketamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Espinhas Dendríticas/fisiologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores Sexuais
14.
Artigo em Inglês | MEDLINE | ID: mdl-31187076

RESUMO

BACKGROUND: Ketamine has rapid antidepressant effects and shows great promise as a novel treatment for depression, but its limitations including its abuse potential are poorly understood. Given that the prevalence of depression is twice as high in women as in men and that depression and substance use disorders are highly comorbid, we hypothesized that a sex-specific responsivity to behavioral assays that characterize addiction-like behavior may arise in rats with prior exposure to chronic stress and therapeutically relevant ketamine. METHODS: Male and female rats that underwent chronic mild stress were treated with four 1.47 mg/kg intravenous ketamine infusions once every fourth day and underwent operant self-administration of 0.5 mg/kg/infusion ketamine. Measures of anhedonia (or lack of pleasure, a signature feature of depression), anxiety-induced neophagia, motivation to obtain ketamine, and craving were assessed using the sucrose intake test, novelty-suppressed feeding test, progressive ratio schedule of reinforcement, and incubation of craving following abstinence, respectively. Finally, dendritic spine density in the nucleus accumbens core was measured. RESULTS: Ketamine infusions reduced anxiety-induced neophagia in both male rats and female rats but had no effect on measures of anhedonia. Female rats with prior exposure to chronic mild stress had greater motivation to obtain ketamine compared to nonstressed female rats, an effect not observed in male rats. Additionally, female rats who received antidepressant ketamine infusions had a higher threshold for displaying ketamine addiction-like behavior than saline-treated female rats as well as increased thin spine density in the nucleus accumbens core. These effects were not observed in male rats. CONCLUSION: This study shows that repeated low-dose ketamine does not increase abuse potential of subsequent ketamine. It also highlights an important female-specific effect of stress to increase ketamine addiction-like behavior, which requires further investigation for clinical populations.

15.
Neurosci Biobehav Rev ; 105: 305-317, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020607

RESUMO

Growing evidence has begun to elucidate the contribution of epigenetic mechanisms in the modulation and maintenance of gene expression and behavior. Histone acetylation is one such epigenetic mechanism, which has been shown to profoundly alter gene expression and behaviors. In this review, we begin with an overview of the major epigenetic mechanisms including histones acetylation. We next focus on recent evidence about the influence of environmental stimuli on various motivated behaviors through histone acetylation and highlight how histone deacetylase inhibitors can correct some of the pathologies linked to motivated behaviors including substance abuse, feeding and social attachments. Particularly, we emphasize that the effects of histone deacetylase inhibitors on motivated behaviors are time and context-dependent.


Assuntos
Agressão/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Comportamento Materno/efeitos dos fármacos , Motivação/efeitos dos fármacos , Apego ao Objeto , Comportamento Social , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Humanos
16.
Physiol Behav ; 203: 60-69, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055748

RESUMO

RATIONALE: Subanesthetic ketamine (KET) elicits rapid, robust, but transient antidepressant effects. KET's antidepressant actions can be augmented and maintained for a longer duration when repeatedly delivered. However, KET is recreationally abused, raising long-term treatment safety concerns. Women are more likely than men to seek treatment for depression, escalate from casual to compulsive drug use, and are more sensitive to antidepressants. Similarly, female rodents are more sensitive than males to KET's rapid antidepressant-like behavioral effects; dose-response thresholds in these assays equal 2.5 and 5.0mg/kg (i.p.), respectively. This suggests the utility of preclinical rodent models in optimizing sex-differential KET therapy protocols and minimizing adverse drug reactions. OBJECTIVES: Here, we assessed behavioral and biochemical correlates of abuse liability following six serial KET treatments on alternating days at three subanesthetic, antidepressant-like doses (2.5, 5.0, or 10mg/kg, i.p.) in adult male and female rats. A potential role for ΔFosB-mediated transcription in the nucleus accumbens is outlined in the context of KET-mediated locomotor sensitization. RESULTS: Antidepressant-like threshold doses (2.5, 5.0mg/kg KET) failed to evoke a conditioned place preference in all animals, but only males positively responded to a higher dose (10mg/kg). Behavioral sensitization to 5.0 or 10mg/kg KET's locomotor-activating effects was established in both sexes, and females' sensitized response to 5.0mg/kg was greater than males'. KET-induced hyperlocomotion positively correlated with ΔFosB protein expression in the nucleus accumbens. rAAV-ΔJunD inhibition of ΔFosB-mediated transcription in the accumbens failed to block locomotor sensitization to 10mg/kg KET. CONCLUSIONS: These data suggest that in rats, six alternating-day treatments with 2.5mg/kg KET do not induce apparent behavioral signatures of abuse liability despite accumulation of ΔFosB protein in the accumbens. Additionally, females are more sensitive than males to KET's locomotor-stimulant properties, both acutely and after repeated treatments. More studies are needed to determine brain regions and neural mechanisms responsible for KET-induced behavioral adaptations and to extrapolate these data to inform sex-dependent strategies for long-term KET therapy protocols for depression.


Assuntos
Anestésicos Dissociativos/administração & dosagem , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Ketamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
17.
Neurobiol Stress ; 9: 166-175, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450382

RESUMO

In this review, we will discuss the safety of repeated treatments with ketamine for patients with treatment-resistant depression (TRD), a condition in which patients with major depression do not show any clinical improvements following treatments with at least two antidepressant drugs. We will discuss the effects of these treatments in both sexes at different developmental periods. Numerous small clinical studies have shown that a single, low-dose ketamine infusion can rapidly alleviate depressive symptoms and thoughts of suicidality in patients with TRD, and these effects can last for about one week. Interestingly, the antidepressant effects of ketamine can be prolonged with intermittent, repeated infusion regimens and produce more robust therapeutic effects when compared to a single infusion. The safety of such repeated treatments with ketamine has not been thoroughly investigated. Although more studies are needed, some clinical and preclinical reports indicated that repeated infusions of low doses of ketamine may have addictive properties, and suggested that adolescent and adult female subjects may be more sensitive to ketamine's addictive effects. Additionally, during ketamine infusions, many TRD patients report hallucinations and feelings of dissociation and depersonalization, and therefore the effects of repeated treatments of ketamine on cognition must be further examined. Some clinical reports indicated that, compared to women, men are more sensitive to the psychomimetic effects of ketamine. Preclinical studies extended these findings to both adolescent and adult male rodents and showed that male rodents at both developmental periods are more sensitive to ketamine's cognitive-altering effects. Accordingly, in this review we shall focus our discussion on the potential addictive and cognitive-impairing effects of repeated ketamine infusions in both sexes at two important developmental periods: adolescence and adulthood. Although more work about the safety of ketamine is warranted, we hope this review will bring some answers about the safety of treating TRD with repeated ketamine infusions.

18.
Integr Zool ; 13(6): 795-803, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30318755

RESUMO

DNA methylation has been identified as a powerful and activity-dependent regulator of changes in the brain that may underlie neuroadaptations in response to various types of stimuli, including exposure to drugs of abuse. Indeed, the medial prefrontal cortex (mPFC) projections to the nucleus accumbens (NAc) are critically important for reinstated cocaine-seeking in a rodent model of cocaine relapse. This circuitry undergoes several epigenetic modifications following cocaine exposure, including changes in DNA methylation that are associated with drug-seeking behavior. We have previously shown that methyl supplementation via L-Methionine (MET) administration attenuates cocaine-seeking behavior and reverses expression and methylation patterns of the immediate early gene c-fos, suggesting that MET may act by altering the excitability of this circuitry during cocaine reinstatement. In the current study, male rats were microinjected with an adeno-associated virus overexpressing halorhodopsin in the mPFC, optical fibers were surgically implanted into the NAc, and the rats were given injections of MET daily. Rats underwent acquisition of cocaine self-administration (0.75 mg/kg/infusion, 2-h sessions) followed by extinction training in the absence of drug-paired cues. Two reinstatement tests were conducted: cue-induced reinstatement without optogenetic manipulations and cocaine-primed reinstatement with optogenetic inhibition of mPFC-to-NAc projections. There were no group differences before the cocaine-primed reinstatement session, and all groups showed robust cue-induced reinstatement. Both rats treated with MET and rats that received mPFC-to-NAc inhibition showed an abolishment of cocaine-primed reinstatement, suggesting that systemic methyl supplementation may act through this critical circuity.


Assuntos
Cocaína/farmacologia , Metionina/farmacologia , Núcleo Accumbens/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Condicionamento Operante/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Núcleo Accumbens/citologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico
19.
J Pharmacol Exp Ther ; 367(3): 393-404, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213876

RESUMO

Recent work from our group and others has revealed a higher sensitivity of female rodents to the antidepressant-like effects of the N-methyl d-aspartate receptor antagonist ketamine strongly influenced by circulating estrogen and progesterone levels. However, in the absence of any preclinical studies of pharmacokinetic sex differences using low-dose ketamine in rats, it is unclear whether the effects of sex and hormonal milieu on ketamine's behavioral actions are influenced by differences in ketamine metabolism between male and female rats. Therefore, this work examined whether sex and hormonal status affect ketamine metabolism and distribution in male and female rats using a low antidepressant-like dose selectively effective in females. Intact male rats and female rats in either diestrus (low estrogen, progesterone) or proestrus (high estrogen, progesterone) were administered low-dose ketamine, and their plasma and brains were collected to analyze levels of ketamine and its metabolites norketamine (NK) and dehydronorketamine. Females exhibited greater concentrations of ketamine and NK over the first 30 min following treatment in both brain and plasma, largely accounted for by slower clearance rates and longer half-lives. Interestingly, despite the impact of ovarian hormones on behavioral sensitivity to ketamine, no appreciable differences in pharmacokinetic parameters existed between proestrus and diestrus female rats. This work is the first to demonstrate sex differences in ketamine pharmacokinetics in rats, and suggests that while sex differences in metabolism may influence the amount of ketamine and NK reaching target areas in the brain, the impact of circulating hormone levels here is negligible.


Assuntos
Encéfalo/metabolismo , Ketamina/sangue , Ketamina/farmacocinética , Plasma/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Progesterona/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...