Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956988

RESUMO

Entomopathogenic fungi may interact with insects' symbiotic bacteria during infection. We hypothesized that topical infection with Beauveria bassiana may alter the microbiota of the Colorado potato beetle (CPB) and that these modifications may alter the course of mycoses. We used a model with two concentrations of conidia: (1) high concentration that causes rapid (acute) pathogenesis with fast mortality followed by bacterial decomposition of insects; (2) lower concentration that leads to prolonged pathogenesis ending in conidiation on cadavers. The fungal infections increased loads of enterobacteria and bacilli on the cuticle surface and in hemolymph and midgut, and the greatest increase was detected during the acute mycosis. By contrast, stronger activation of IMD and JAK-STAT signaling pathways in integuments and fat body was observed during the prolonged mycosis. Relatively stable (nonpathogenic) conditions remained in the midgut during both scenarios of mycosis with slight changes in bacterial communities, the absence of mesh and stat expression, a decrease in reactive oxygen species production, and slight induction of Toll and IMD pathways. Oral administration of antibiotic and predominant CPB bacteria (Enterobacteriaceae, Lactococcus, Pseudomonas) led to minor and mainly antagonistic effects in survival of larvae infected with B. bassiana. We believe that prolonged mycosis is necessary for successful development of the fungus because such pathogenesis allows the host to activate antibacterial reactions. Conversely, after infection with high concentrations of the fungus, the host's resources are insufficient to fully activate antibacterial defenses, and this situation makes successful development of the fungus impossible.

2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000497

RESUMO

This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Sinorhizobium , Microbiologia do Solo , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Sinorhizobium/genética , Sinorhizobium/virologia , Sinorhizobium/fisiologia , Fases de Leitura Aberta
3.
Sci Rep ; 14(1): 15342, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961196

RESUMO

Mitochondrial forms account approximately 1-2% of all nonsyndromic cases of hearing loss (HL). One of the most common causative variants of mtDNA is the m.1555A > G variant of the MT-RNR1 gene (OMIM 561000). Currently the detection of the m.1555A > G variant of the MT-RNR1 gene is not included in all research protocols. In this study this variant was screened among 165 patients with HL from the Republic of Buryatia, located in the Baikal Lake region of Russia. In our study, the total contribution of the m.1555A > G variant to the etiology of HL was 12.7% (21/165), while the update global prevalence of this variant is 1.8% (863/47,328). The m.1555A > G variant was notably more prevalent in Buryat (20.2%) than in Russian patients (1.3%). Mitogenome analysis in 14 unrelated Buryat families carrying the m.1555A > G variant revealed a predominant lineage: in 13 families, a cluster affiliated with sub-haplogroup A5b (92.9%) was identified, while one family had the D5a2a1 lineage (7.1%). In a Russian family with the m.1555A > G variant the lineage affiliated with sub-haplogroup F1a1d was found. Considering that more than 90% of Buryat families with the m.1555A > G variant belong to the single maternal lineage cluster we conclude that high prevalence of this variant in patients with HL in the Baikal Lake region can be attributed to a founder effect.


Assuntos
DNA Mitocondrial , Efeito Fundador , Perda Auditiva , Humanos , Federação Russa/epidemiologia , Feminino , Masculino , Perda Auditiva/genética , Perda Auditiva/epidemiologia , Prevalência , DNA Mitocondrial/genética , Adulto , Criança , Adolescente , Haplótipos , Pré-Escolar , Pessoa de Meia-Idade , Lagos , Adulto Jovem
4.
Anal Methods ; 16(26): 4234-4239, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38899488

RESUMO

Melanoma inhibitory activity protein (MIA) does obviously offer the potential to reveal clinical manifestations of melanoma. Despite a pressing need for effective diagnosis of this highly fatal disease, there are no clinically approved MIA detection ELISA kits available. A recommended MIA threshold has not yet been defined, mostly by reason of variability in immunoglobulins' affinity and stability, the difference in sample preparation and assay conditions. Here we present a pair of high-affinity DNA aptamers developed as an alternative recognition and binding element for MIA detection. Their stability and reproducible synthesis are expected to ensure this analysis under standard conditions. The devised aptamer-based solid-phase microassay of model standard and control human sera involves luciferase NLuc as a highly sensitive reporter. Bioluminescence dependence on MIA concentration ranges in a linear manner from 2.5 to 250 ng mL-1, providing a MIA detection limit of 1.67 ± 0.57 ng mL-1.


Assuntos
Aptâmeros de Nucleotídeos , Medições Luminescentes , Melanoma , Humanos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Melanoma/sangue , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/análise , Limite de Detecção , Biomarcadores Tumorais/sangue , Proteínas da Matriz Extracelular
5.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675939

RESUMO

The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.


Assuntos
Animais Selvagens , Avulavirus , Aves , Vírus da Influenza A , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Animais Selvagens/virologia , Avulavirus/genética , Avulavirus/classificação , Avulavirus/isolamento & purificação , Avulavirus/patogenicidade , Genoma Viral , Infecções por Avulavirus/veterinária , Infecções por Avulavirus/virologia , Infecções por Avulavirus/epidemiologia
6.
Biochim Biophys Acta Gen Subj ; 1868(7): 130616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621596

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.


Assuntos
Sistemas CRISPR-Cas , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Células HEK293 , Técnicas de Inativação de Genes/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Reparo do DNA/genética
7.
Viruses ; 16(3)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543752

RESUMO

The human adenovirus (HAdV) is a common pathogen in children that can cause acute respiratory virus infection (ARVI). However, the molecular epidemiological and clinical information relating to HAdV among hospitalized children with ARVI is rarely reported in Russia. A 4-year longitudinal (2019-2022) study among hospitalized children (0-17 years old) with ARVI in Novosibirsk, Russia, was conducted to evaluate the epidemiological and molecular characteristics of HAdV. Statistically significant differences in the detection rates of epidemiological and virological data of all positive viral detections of HAdV were analyzed using a two-tailed Chi-square test. The incidence of HAdV and other respiratory viruses such as human influenza A and B viruses, respiratory syncytial virus, coronavirus, parainfluenza virus, metapneumovirus, rhinovirus, bocavirus, and SARS-CoV-2 was investigated among 3190 hospitalized children using real-time polymerase chain reaction. At least one of these respiratory viruses was detected in 74.4% of hospitalized cases, among which HAdV accounted for 4%. A total of 1.3% co-infections with HAdV were also registered. We obtained full-genome sequences of 12 HAdVs, which were isolated in cell cultures. Genetic analysis revealed the circulation of adenovirus of genotypes C1, C2, C5, C89, and 108 among hospitalized children in the period from 2019-2022.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Criança , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Adolescente , Adenovírus Humanos/genética , Criança Hospitalizada , Hospitalização , Infecções Respiratórias/epidemiologia , Federação Russa/epidemiologia , Variação Genética , Infecções por Adenovirus Humanos/epidemiologia
8.
Open Biol ; 14(1): 230366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38290548

RESUMO

Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.


Assuntos
Proteínas Ribossômicas , Ribossomos , Humanos , Composição de Bases , Células HEK293 , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Fungi (Basel) ; 9(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38132743

RESUMO

Black scurf and stem canker caused by Rhizoctonia solani is a significant disease problem of potatoes. Currently, chemical methods are the primary means of controlling this pathogen. This study sought to explore an alternative approach by harnessing the biocontrol potential of a bacterial mix of Bacillus subtilis and Bacillus amyloliquefaciens against black scurf, and to determine their effect on rhizosphere microorganisms of soil microbiota. This study showed that these bacteria demonstrate antagonistic activity against Rhizoctonia solani. Reduced damage to potato plants during the growing season in Siberia was observed. The index of disease development decreased from 40.9% to 12.0%. The treatment of tubers with this mix of bacteria also led to a change in the composition of the rhizosphere microbiota (according to CFU, 16S and ITS sequencing). This effect was accompanied by a positive change in plant physiological parameters (spectrophotometric analysis). The concentration of chlorophyll in potatoes with the bacterial mix treatment increased by 1.3 fold (p ≤ 0.001), and of carotenoids by 1.2 fold (p ≤ 0.01) compared with the control. After bacterial mix treatment, the length of the aerial parts of plants was 1.3 fold higher (p ≤ 0.001), and the number of stems 1.4 fold higher (p ≤ 0.05). The yield of potatoes was increased by 8.2 t/ha, while the large tuber fraction was increased by 16% (p ≤ 0.05). The bacteria mix of Bacillus subtilis and Bacillus amyloliquefaciens suppressed the plant pathogenic fungus Rhizoctonia solani, and simultaneously enhanced the physiological parameters of potato plants. This treatment can be used to enhance the yield/quality of potato tubers under field conditions.

10.
Insects ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999088

RESUMO

Environmental pollution with antibiotics can cause antibiotic resistance in microorganisms, including the intestinal microbiota of various insects. The effects of low-dose aminoglycoside antibiotic (amikacin) on the resident gut microbiota of Galleria mellonella, its digestion, its physiological parameters, and the resistance of this species to bacteria Bacillus thuringiensis were investigated. Here, 16S rDNA analysis revealed that the number of non-dominant Enterococcus mundtii bacteria in the eighteenth generation of the wax moth treated with amikacin was increased 73 fold compared to E. faecalis, the dominant bacteria in the native line of the wax moth. These changes were accompanied by increased activity of acidic protease and glutathione-S-transferase in the midgut tissues of larvae. Ultra-thin section electron microscopy detected no changes in the structure of the midgut tissues. In addition, reduced pupa weight and resistance of larvae to B. thuringiensis were observed in the eighteenth generation of the wax moth reared on a diet with amikacin. We suggest that long-term cultivation of wax moth larvae on an artificial diet with an antibiotic leads to its adaptation due to changes in both the gut microbiota community and the physiological state of the insect organism.

11.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834480

RESUMO

Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.


Assuntos
Artéria Torácica Interna , Humanos , Vasos Coronários , Células Endoteliais , Multiômica , Proteômica
12.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894089

RESUMO

Managing soil biodiversity using reduced tillage is a popular approach, yet soil bacteriobiomes in the agroecosystems of Siberia has been scarcely studied, especially as they are related to tillage. We studied bacteriobiomes in Chernozem under natural steppe vegetation and cropped for wheat using conventional or no tillage in a long-term field trial in the Novosibirsk region, Russia, by using the sequence diversity of the V3/V4 region of 16S rRNA genes. Actinobacteria, Acidobacteria, and Proteobacteria summarily accounted for 80% of the total number of sequences, with Actinobacteria alone averaging 51%. The vegetation (natural vs. crop) and tillage (ploughed vs. no-till) affected the bacterial relative abundance at all taxonomic levels and many taxa, e.g., hundreds of OTUs. However, such changes did not translate into α-biodiversity changes, i.e., observed and potential OTUs' richness, Shannon, and Simpson, excepting the slightly higher evenness and equitability in the top 0-5 cm of the undisturbed soil. As for the ß-biodiversity, substituting conventional ploughing with no tillage and maintaining the latter for 12 years notably shifted the soil bacteriobiome closer to the one in the undisturbed soil. This study, presenting the first inventory of soil bacteriobiomes under different tillage in the south of West Siberia, underscores the need to investigate the seasonality and longevity aspects of tillage, especially as they are related to crop production.

13.
Microorganisms ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37110366

RESUMO

Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.

14.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047141

RESUMO

Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Humanos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hidroxilação , Células HEK293 , Mutação , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982223

RESUMO

Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.


Assuntos
Diester Fosfórico Hidrolases , Topotecan , Sistemas CRISPR-Cas , DNA , Reparo do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Esterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Topotecan/farmacologia , Transcriptoma , Poli(ADP-Ribose) Polimerase-1/metabolismo
16.
J Infect Dev Ctries ; 17(2): 251-259, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897908

RESUMO

Isolation of human respiratory syncytial virus (HRSV) from clinical samples and storage of isolates for long period remains a considerable problem. We describe in detail the optimized conditions of HRSV isolation and cultivation in three cell cultures HeLa, HEp-2, and Vero. HRSV was detected in 35.2% (166/471) specimens by real-time PCR from symptomatic infants and children up to 15 years from October 2017 to March 2018 in Russia. HRSV-positive samples were used for virus isolation in HeLa, HEp-2, and Vero cells in different manners (in monolayer or suspension). To optimize the conditions of HRSV cultivation, these cell cultures were treated or not with receptor-destroying enzyme (RDE). Ten isolates were successfully obtained by the way of infection of the suspension of cells with subsequent RDE treatment. Among them, several isolates induced the cytopathogenic effect (CPE) by the syncytium formation in both Hela and HEp-2 cell cultures. The genetic analysis revealed that the manners of isolation by using monolayer or suspension and subsequent RDE treatment did not influence the nucleotide and amino acid structures of obtained HRSVs. The CPE characteristics of obtained viruses were the same in HeLa, HEp-2, and Vero cell cultures, and were described as large syncytium up to 150 microns or more in size with the nuclei peripheral location and an optically bright zone in the center of the formation. We showed that infection of cell suspension with the subsequent RDE treatment increased the chance of HRSVs isolation from clinical samples.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Criança , Animais , Chlorocebus aethiops , Humanos , Vírus Sincicial Respiratório Humano/genética , Células Vero , Federação Russa
17.
Cancers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672380

RESUMO

The locus-specific methylation of three genes (GSTP1, RNF219, and KIAA1539, also known as FAM214B) in the total pool of blood cell-free DNA, including cell-free DNA from plasma and cell-surface-bound DNA, of patients with prostate cancer and healthy donors was studied on the MiSeq platform. Our study found a higher methylation index of loci for total cell-free DNA compared with cell-free DNA. For total cell-free DNA, the methylation of GSTP1 in each of the 11 positions provided a complete separation of cancer patients from healthy donors, whereas for cell-free DNA, there were no positions in the three genes allowing for such separation. Among the prostate cancer patients, the minimum proportion of GSTP1 genes methylated in any of the 17 positions was 12.1% of the total circulated DNA fragments, and the minimum proportion of GSTP1 genes methylated in any of the 11 diagnostically specific positions was 8.4%. Total cell-free DNA was shown to be more convenient and informative as a source of methylated DNA molecules circulating in the blood than cell-free DNA.

18.
Microb Pathog ; 175: 105958, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572197

RESUMO

Bacillus thuringiensis (Bt) is one of the most common entomopathogenic bacteria used as a biopesticide, and source of endotoxin genes for generating insect-resistant transgenic plants. The mechanisms underpinning an insect's susceptibility or resistance to B. thuringiensis are diverse. The bacterial lifecycle does not end with the death of a host, they continue to exploit the cadaver to reproduce and sporulate. Herein, we studied the progression of B. thuringiensis subsp. galleriae infection in two populations of wax moth larvae (Galleria mellonella) to gain further insight into the "arms race" between B. thuringiensis virulence and insect defences. Two doses of B. thuringiensis subsp. galleriae (spore and crystalline toxin mixtures) were administered orally to compare the responses of susceptible (S) and resistant (R) populations at ∼30% mortality each. To investigate B. thuringiensis-insect antibiosis, we used a combination of in vivo infection trials, bacterial microbiome analysis, and RNAi targeting the antibacterial peptide gloverin. Within 48 h post-inoculation, B. thuringiensis-resistant insects purged the midgut of bacteria, i.e., colony forming unit numbers fell below detectable levels. Second, B. thuringiensis rapidly modulated gene expression to initiate sporulation (linked to quorum sensing) when exposed to resistant insects in contrast to susceptible G. mellonella. We reinforce earlier findings that elevated levels of antimicrobial peptides, specifically gloverin, are found in the midgut of resistant insects, which is an evolutionary strategy to combat B. thuringiensis infection via its main portal of entry. A sub-population of highly virulent B. thuringiensis can survive the enhanced immune defences of resistant G. mellonella by disrupting the midgut microbiome and switching rapidly to a necrotrophic strategy, prior to sporulation in the cadaver.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/metabolismo , Mariposas/microbiologia , Insetos/microbiologia , Larva/microbiologia , Sistema Digestório/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140880, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396097

RESUMO

The human protein uS3, a component of the small ribosomal subunit, has a long-known extra-ribosomal activity as an enzyme of base excision DNA repair displayed in its ability to cleave DNA at abasic (AP) sites. It has been found that the efficacy of DNA cleavage by uS3 in vitro depends on the DNA sequence. To clarify the issue on the sequence specificity of uS3 as an AP lyase in general, we applied a combinatorial approach based on the use of a model single-stranded circular DNA with an AP site flanked with random trinucleotides at both sides. The cleavage of this DNA by uS3 under conditions when only its minor portion undergoes the reaction resulted in the formation of the linear DNA with random triplets at the 5' and 3' termini. NGS sequencing of the DNA library derived from this DNA allowed identifying the contexts within which uS3 cleaves DNA the most and the least effectively. Given that the AP lyase reaction occurs via the formation of a covalent intermediate (Schiff base), we determined the region comprising the active center of the uS3 protein. By digesting of uS3 cross-linked to a radiolabeled AP site-containing model DNA with specific proteolytic agents followed by analysis of the resulting modified oligopeptides, the cross-link was mapped to the region 155-192 (likely, to R173/R178). Thus, our results clarified two previously unstudied features of the uS3 AP lyase activity, one related to the recognition of sequences in DNA surrounding the AP site, and the other to the protein region directly contacting this site.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Clivagem do DNA , Reparo do DNA , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/genética , Proteínas Virais/genética , Proteínas Serina-Treonina Quinases/genética
20.
Microorganisms ; 12(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38257907

RESUMO

The present study aimed to investigate the recovery of soil quality and the bacterial and fungal communities following various recultivation methods in areas contaminated with oil. Oil spills are known to have severe impacts on ecosystems; thus, the restoration of contaminated soils has become a significant challenge nowadays. The study was conducted in the forest-tundra zone of the European North-East, where 39 soil samples from five oil-contaminated sites and reference sites were subjected to metagenomic analyses. The contaminated sites were treated with different biopreparations, and the recovery of soil quality and microbial communities were analyzed. The analysis of bacteria and fungi communities was carried out using 16S rDNA and ITS metabarcoding. It was found that 68% of bacterial OTUs and 64% of fungal OTUs were unique to the reference plot and not registered in any of the recultivated plots. However, the species diversity of recultivated sites was similar, with 50-80% of bacterial OTUs and 44-60% of fungal OTUs being common to all sites. New data obtained through soil metabarcoding confirm our earlier conclusions about the effectiveness of using biopreparations with indigenous oil-oxidizing micro-organisms also with mineral fertilizers, and herbaceous plant seeds for soil remediation. It is possible that the characteristics of microbial communities will be informative in the bioindication of soils reclaimed after oil pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...