Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1206: 339783, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473855

RESUMO

Glycans are ubiquitous, structurally diverse molecules that have specific and general roles involving metabolism, structure, and cell-to-cell signaling. Functional specificity depends strongly on the complexity of structures that polysaccharides can adopt based on their subunit composition, length, extent of branching, glycosidic bond connectivity and anomeric configuration. However, a rapid and comprehensive characterization of glycan isomers can be challenging owing to limitations associated with their separation. Here, ten composition, anomeric and connectivity disaccharide isomers were separated and detected using high-resolution differential ion mobility-mass spectrometry (DMS-MS, also known as FAIMS). Focus was primarily directed to compositional isomers corresponding to epimers that differ by the axial or equatorial position of a single hydroxyl group. DMS resolving power was enhanced 14-fold primarily by increasing the fraction of helium in the ion carrier gas and lowering the flow rate. At relatively high disaccharide concentrations, DMS-MS of each disaccharide resulted in complex and unique multi-peak spectra with up to ten fully and partially resolved peaks for ß-1,4-mannobiose (Man-1,4ß-Man), which can be attributed to the DMS separation and subsequent dissociation of ionic non-covalently bound oligomers into monomer ions. Each DMS spectrum has at least one differentiating peak that is not in the other spectra, indicating that DMS can be used to fully or partially resolve composition, configuration and connectivity isomers. At relatively low disaccharide concentrations, mixtures of disaccharide epimers can also be readily separated by DMS. The integration of high-resolution, ambient pressure DMS with complementary reduced-pressure ion mobility and MS-based glycomics and glycoproteomics workflows may be useful for improving the characterization of glycans and glycosylated biomolecules.


Assuntos
Dissacarídeos , Dissacarídeos/análise , Humanos , Íons/química , Isomerismo , Espectrometria de Massas/métodos
2.
Analyst ; 147(5): 870-879, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35136893

RESUMO

Differential ion mobility (DMS) is a versatile ion separation method that is often integrated with mass spectrometry (MS). In DMS, extremely high electric fields are used such that ion mobility depends non-linearly on electric field and thus, ion separations can be more orthogonal to MS than lower field ion mobility-based methods. DMS can have sufficiently high resolution to be used for enantiomer analysis of small molecules and to separate protein ions with peak widths comparable to those obtained for peptides. However, the performance of high resolution DMS-MS can be limited owing to the substantial loss of ions (>10-fold) that can occur upon their transfer from atmospheric pressure (where DMS separation typically occurs) to vacuum through a narrow conductance limited inlet (e.g. capillary) to the MS. Here, results from simulated ion trajectory simulations suggest that in high resolution DMS most ions can be lost by 'crashing' onto the narrow capillary inlet after exiting the DMS separation channel. To enhance DMS sensitivity and resolving power, an integrated DMS-MS interface concept is reported that consists of a slit electrode and a 12-electrode atmospheric pressure ion funnel (APIF). By using an APIF with slit entrance, the simulated ion transmission efficiencies increase by up to 257% for singly charged ions ([DMMP + H]+, [tryptophan + H]+, and [(2-dodecanone)2 + H]+) and by 209% for [ubiquitin + 12H]12+, without compromising resolving power. The use of APIF improves the ion focussing from the DMS exit to the MS capillary to improve sensitivity, and the slit ensures that ion dispersion in the analytically relevant direction perpendicular to the DMS electrodes is restricted to enhance resolution. By narrowing the slit of the DMS-Slit-APIF interface, the DMS resolving power can be increased further by at least 20%. Overall, these results indicate that the integrated DMS-Slit-APIF interface is promising for improving the sensitivity and resolution for many different types of DMS-MS experiments.


Assuntos
Pressão Atmosférica , Espectrometria de Mobilidade Iônica , Íons , Espectrometria de Massas , Estereoisomerismo
3.
J Breath Res ; 15(4)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34252887

RESUMO

Non-invasive medical diagnosis by analysing volatile organic compounds (VOCs) at the point-of-care is becoming feasible owing to recent advances in portable instrumentation. A number of studies have assessed the performance of a state-of-the-art VOC analyser (micro-chip high-field asymmetric waveform ion mobility spectrometry, FAIMS) for medical diagnosis. However, a comprehensive meta-analysis is needed to investigate the overall diagnostic performance of these novel methods across different medical conditions. An electronic search was performed using the CAplus and MEDLINE database through the SciFinder platform. The review identified a total of 23 studies and 2312 individuals. Eighteen studies were used for meta-analysis. A pooled analysis found an overall sensitivity of 80% (95% CI, 74%-85%,I2= 62%), and specificity of 78% (95% CI, 70%-84%,I2= 80%), which corresponds to the overall diagnostic performance of micro-chip FAIMS across many different medical conditions. The diagnostic accuracy was particularly high for coeliac and inflammatory bowel disease (sensitivity and specificity from 74% to 97%). The overall diagnostic performance was similar across breath, urine, and faecal matrices with sparse logistic regression and random forests algorithms resulting in higher diagnostic accuracy. Sources of variability likely arise from differences in sample storage, sampling protocol, method of data analysis, type of disease, sample matrix, and potentially to clinical and disease factors. The results of this meta-analysis indicate that micro-chip FAIMS is a promising candidate for disease screening at the point-of-care, particularly for gastroenterology diseases. This review provides recommendations that should improve the techniques relevant to diagnostic accuracy of future VOC and point-of-care studies.


Assuntos
Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis , Testes Respiratórios , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
4.
Anal Chem ; 92(24): 15811-15817, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259206

RESUMO

In mass spectrometry (MS), a major loss of ions can readily occur during their transfer from atmospheric pressure to a lower pressure, which limits performance. Here, we report an ion funnel that can be used to effectively focus ions at ambient pressure (∼777 Torr) to significantly enhance performance in electrospray ionization (ESI) MS. For seven singly charged test ions (m/z 124-1131), the ambient pressure ion funnel (APIF) is demonstrated to improve ion abundances, sensitivity, and detection limits by up to factors of ∼17, ∼16, and ∼3, respectively, compared to the operation of conventional ESI-MS. Simulated ion trajectories were used to rationalize the enhanced performance of the APIF, which is attributed primarily to using a relatively high RF field amplitude to radially confine ions, a high DC field, and a wide exit ring electrode. The effective focusing of ions at ambient pressures should be beneficial in the future for improving the performance of (i) additional methods that ionize molecules at atmospheric pressure, (ii) ambient pressure ion mobility-based instruments, and (iii) high flow rate liquid chromatography mass spectrometry platforms.

5.
Anal Chem ; 91(18): 11827-11833, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429255

RESUMO

Methylation of arginine residues in proteins, an enzyme-mediated post-translational modification (PTM), is important for mRNA processing and transport and for the regulation of many protein-protein interactions. However, proteolytic peptides resulting from alternative sites of post-translational methylation have identical masses and cannot be readily separated by standard liquid chromatography-mass spectrometry. Unlike acetylation or phosphorylation, methylation of arginine does not strongly affect the charge states of peptide ions, multiple instances of methylation can occur on a single amino acid residue, and the relative mass of the modification is <1% that of the typical proteolytic peptide. High field asymmetric waveform ion mobility spectrometry (FAIMS) is an orthogonal separation method to liquid chromatography that can rapidly separate gaseous ions prior to detection by mass spectrometry. Here, we report that FAIMS can be used to separate arginine-methylated peptides that differ by the position of a single methyl group for both mono- and dimethylated variants. Although the resolution of separation for these arginine-methylated peptides improved with increasing amounts of helium in the FAIMS carrier gas as expected, we found that the site of methylation can strongly affect the dependence of the electric field used for ion transmission on the extent of helium in the carrier gas. Thus, certain isobaric peptides can be cotransmitted at high helium concentrations whereas lower concentrations can be used for successful separations of such peptide mixtures. The capability to rapidly resolve isobaric arginine-methylated peptides should be useful in the future for the detailed analysis of protein arginine methylation in biological samples.


Assuntos
Espectrometria de Massas/métodos , Proteínas Nucleares/química , Peptídeos/isolamento & purificação , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Hélio/química , Espectrometria de Mobilidade Iônica/métodos , Metilação , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequências Repetitivas de Aminoácidos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Anal Chim Acta ; 1036: 172-178, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30253829

RESUMO

The chiral analysis of enantiomers is important because bioactivity can depend strongly on stereochemistry as ligand-protein binding motifs are typically chiral. Ion mobility mass spectrometry-based methods are emerging for the rapid and sensitive chiral analysis of molecules. However, such methods are typically limited by the use of metal-bound trimers, which can be challenging to form owing to ion suppression and the need for extensive pre-screening experiments to identify suitable metal ions. Moreover, the chiral separation of very small molecules, such as cysteine and proline, using ion mobility has remained challenging. Here, using electrospray ionisation high-resolution differential ion mobility mass spectrometry (ESI-DMS-MS), we demonstrate that the enantiomers of benchmark amino acids as small as proline can be rapidly distinguished without the use of metal ions for the first time. ESI-DMS-MS of proton-bound diastereomeric dimer complexes, containing enantiomers of amino acids and a 'chiral selector' (N-tert-butoxycarbonyl-O-benzyl-l-serine; BBS) corresponding to [L/D-X(BBS)+H]+ (X = cysteine and proline) resulted in the separation of L and D-enantiomers. By use of DMS-MS and standard solutions of chiral mixtures, these data indicate that the enantiomeric excess of proline can be accurately quantified by differential ion mobility mass spectrometry. Overall, these results provide further evidence that DMS-MS can be used for the rapid and accurate 'metal-ion free' chiral analysis of many other biologically important molecules.


Assuntos
Aminoácidos/análise , Espectrometria de Massas por Ionização por Electrospray
7.
Expert Opin Ther Pat ; 28(4): 277-280, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411657

RESUMO

Many commercial and academic institutions protect their commercially valuable research information using patents, making the patent literature a rich and early source of cutting-edge research. While scientists and students often create the data that finds its way into patents, some rarely read the patent literature. Here, we provide an informal and brief collection of hints and tips that may assist scientists and students who do not regularly read the patent literature to locate the key scientific findings that are disclosed by patentees. These tips will introduce the reader to: (i) the general structure of patents and the sections of the patents that scientists and students may find particularly helpful; and (ii) a few factors to keep in mind when using data disclosed in the patent literature, such as patent lifespans, jurisdictions and the patent review processes. Although this is not a comprehensive and complete guide to reading patents, the accessible nature of this informal introduction to patent reading should assist scientists and students to make more effective use of the cutting-edge research disclosed in patent specifications.


Assuntos
Patentes como Assunto , Pesquisa/legislação & jurisprudência , Humanos
8.
Expert Opin Ther Pat ; 28(3): 227-239, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29297703

RESUMO

INTRODUCTION: Human breath can contain thousands of volatile organic compounds (VOCs) and semi-volatile compounds that are related to metabolism and other biochemical processes. The presence of cancer cells can affect the identity and abundances of chemicals in breath when compared to those in healthy control subjects, which can be used to indicate the likelihood of a patient having cancer. Recently, the chemical analysis of exhaled breath from patients has been shown to be promising for diagnosing many different types of cancers, including lung, breast, colon, head, neck, and prostate, along with pre-cancerous conditions (dysplasia). AREAS COVERED: Here, we reviewed the sampling, analytical and data analysis methods reported in the recent patent literature related to cancer breath testing (2014-2017). In addition, the different types of cancer biomarkers that were disclosed are discussed. EXPERT OPINION: The major advantages of breath testing compared to conventional X-ray and imaging based methods includes simplicity of use, non-invasiveness, and the potential to detect cancer at a relatively early stage. Such methods are also suitable to perform population screening because of their non-invasiveness. However, the establishment of standard sampling, detection and quantification methods for breath testing is required before the methods can be employed for clinical diagnosis.


Assuntos
Testes Respiratórios/métodos , Neoplasias/diagnóstico , Compostos Orgânicos Voláteis/análise , Biomarcadores Tumorais/análise , Testes Respiratórios/instrumentação , Detecção Precoce de Câncer , Humanos , Estadiamento de Neoplasias , Neoplasias/patologia , Patentes como Assunto
9.
Analyst ; 141(8): 2463-73, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26981609

RESUMO

Piezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied. The SAW sensor was fabricated with nickel (Ni) interdigitated transducer (IDT) electrodes and a Ag thin film on the delay line of the device. In the case of the QCM sensor, the electrodes were constructed of Ag thin film and simultaneously employed as a sensitive layer. Mercury sensing experiments were conducted for a range of concentrations between 24-365 ppbv without/with the presence of some common industrial interfering gas species (i.e. ammonia, acetaldehyde, ethyl mercaptan, dimethyl disulphide, methyl ethyl ketone and humidity) at various operating temperatures in the range of 35-95 °C. The SAW sensor was found to possess up to 70 times higher response magnitudes than its QCM counterpart at 35 °C while up to 30 and 23 times higher response magnitudes were observed for the SAW sensor at elevated temperatures of 75 and 95 °C, respectively. Furthermore, the SAW sensor showed good selectivity (>89%) toward Hg(0) vapor in the presence of all the interferents tested at an operating temperature of 75 °C while the QCM sensor exhibited significant cross-sensitivity when ethyl mercaptan was introduced along with Hg(0) vapor. Overall, it is indicative that Ag-based acoustic wave sensors do have great potential for Hg sensing applications, given that right operating conditions are applied.

10.
Environ Sci Technol ; 50(3): 1384-92, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26683634

RESUMO

We developed a novel conductometric device with nanostructured gold (Au) sensitive layer which showed high-performance for elemental mercury (Hg(0)) vapor detection under simulated conditions that resemble harsh industrial environments. That is, the Hg(0) vapor sensing performance of the developed sensor was investigated under different operating temperatures (30-130 °C) and working conditions (i.e., humid) as well as in the presence of various interfering gas species, including ammonia (NH3), hydrogen sulfide (H2S), nitric oxide (NO), carbon mono-oxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), hydrogen (H2), methane (CH4), and volatile organic compounds (VOCs) such as ethylmercaptan (EM), acetaldehyde (MeCHO) and methyl ethyl ketone (MEK) among others. The results indicate that the introduction of Au nanostructures (referred to as nanospikes) on the sensor's surface enhanced the sensitivity toward Hg(0) vapor by up-to 450%. The newly developed sensor exhibited a limit of detection (LoD) (∼35 µg/m(3)), repeatability (∼94%), desorption efficiency (100%) and selectivity (∼93%) when exposed to different concentrations of Hg(0) vapor (0.5 to 9.1 mg/m(3)) and interfering gas species at a chosen operating temperature of 105 °C. Furthermore, the sensor was also found to show 91% average selectivity when exposed toward harsher industrial gases such as NO, CO, CO2, and SO2 along with same concentrations of Hg(0) vapor in similar operating conditions. In fact, this is the first time a conductometric sensor is shown to have high selectivity toward Hg(0) vapor even in the presence of H2S. Overall results indicate that the developed sensor has immense potential to be used as accurate online Hg(0) vapor monitoring technology within industrial processes.


Assuntos
Gases/química , Mercúrio/química , Nanotecnologia/instrumentação , Compostos Orgânicos Voláteis/química , Amônia , Dióxido de Carbono , Ouro/química , Sulfeto de Hidrogênio , Limite de Detecção , Dióxido de Enxofre
11.
Langmuir ; 31(30): 8519-29, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26169072

RESUMO

Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C.


Assuntos
Ouro/química , Mercúrio/química , Sistemas Microeletromecânicos , Técnicas de Microbalança de Cristal de Quartzo , Som , Adsorção , Tamanho da Partícula , Propriedades de Superfície
12.
Analyst ; 140(16): 5508-17, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26065560

RESUMO

The detection of elemental mercury (Hg(0)) within industrial processes is extremely important as it is the first major step in ensuring the efficient operation of implemented mercury removal technologies. In this study, a 131 MHz surface acoustic wave (SAW) delay line sensor with gold electrodes was tested towards Hg(0) vapor (24 to 365 ppbv) with/without the presence of ammonia (NH3) and humidity (H2O), as well as volatile organic compounds (VOCs) such as acetaldehyde (MeCHO), ethylmercaptan (EM), dimethyl disulfide (DMDS) and methyl ethyl ketone (MEK), which are all common interfering gas species that co-exist in many industrial applications requiring mercury monitoring. The developed sensor exhibited a detection limit of 0.7 ppbv and 4.85 ppbv at 35 and 55 °C, respectively. Furthermore, a repeatability of 97% and selectivity of 92% in the presence of contaminant gases was exhibited by the sensor at the chosen operating temperature of 55 °C. The response magnitude of the developed SAW sensor towards different concentrations of Hg(0) vapor fitted well with the Langmuir extension isotherm (otherwise known as loading ratio correlation (LRC)) which is in agreement with our basic finite element method (FEM) work where an LRC isotherm was observed for a simplified model of the SAW sensor responding to different Hg contents deposited on the Au based electrodes. Overall, the results indicate that the developed SAW sensor can be a potential solution for online selective detection of low concentrations of Hg(0) vapor found in industrial stack effluents.


Assuntos
Eletrodos , Gases/análise , Ouro/química , Mercúrio/análise , Modelos Teóricos , Som , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...