Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1395923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911328

RESUMO

Introduction: Pulsed Field Ablation (PFA) is a novel non-thermal method for cardiac ablation, relying on irreversible electroporation induced by high-energy pulsed electric fields (PEFs) to create localized lesions in the heart atria. A significant challenge in optimizing PFA treatments is determining the lethal electric field threshold (EFT), which governs ablation volume and varies with PEF waveform parameters. However, the proprietary nature of device developer's waveform characteristics and the lack of standardized nonclinical testing methods have left optimal EFTs for cardiac ablation uncertain. Methods: To address this gap, we introduced a laboratory protocol employing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in monolayer format to evaluate the impact of a range of clinically relevant biphasic pulse parameters on lethal EFT and adiabatic heating (AH). Cell death areas were assessed using fluorescent dyes and confocal microscopy, while lethal EFTs were quantified through comparison with electric field numerical simulations. Results and conclusion: Our study confirmed a strong correlation between cell death in hiPSC-CMs and the number and duration of pulses in each train, with pulse repetition frequency exerting a comparatively weaker influence. Fitting of these results through machine learning algorithms were used to develop an open-source online calculator. By estimating lethal EFT and associated temperature increases for diverse pulse parameter combinations, this tool, once validated, has the potential to significantly reduce reliance on animal models during early-stage device de-risking and performance assessment. This tool also offers a promising avenue for advancing PFA technology for cardiac ablation medical devices to enhance patient outcomes.

2.
Proc Natl Acad Sci U S A ; 119(24): e2117568119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679346

RESUMO

We identify and demonstrate a universal mechanism for terminating spiral waves in excitable media using an established topological framework. This mechanism dictates whether high- or low-energy defibrillation shocks succeed or fail. Furthermore, this mechanism allows for the design of a single minimal stimulus capable of defibrillating, at any time, turbulent states driven by multiple spiral waves. We demonstrate this method in a variety of computational models of cardiac tissue ranging from simple to detailed human models. The theory described here shows how this mechanism underlies all successful defibrillation and can be used to further develop existing and future low-energy defibrillation strategies.


Assuntos
Cardioversão Elétrica , Coração , Simulação por Computador , Cardioversão Elétrica/métodos , Humanos , Modelos Cardiovasculares
3.
Biophys J ; 121(3): 383-395, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968425

RESUMO

A wide range of atrial arrythmias are caused by molecular defects in proteins that regulate calcium (Ca) cycling. In many cases, these defects promote the propagation of subcellular Ca waves in the cell, which can perturb the voltage time course and induce dangerous perturbations of the action potential (AP). However, subcellular Ca waves occur randomly in cells and, therefore, electrical coupling between cells substantially decreases their effect on the AP. In this study, we present evidence that Ca waves in atrial tissue can synchronize in-phase owing to an order-disorder phase transition. In particular, we show that, below a critical pacing rate, Ca waves are desynchronized and therefore do not induce substantial AP fluctuations in tissue. However, above this critical pacing rate, Ca waves gradually synchronize over millions of cells, which leads to a dramatic amplification of AP fluctuations. We exploit an underlying Ising symmetry of paced cardiac tissue to show that this transition exhibits universal properties common to a wide range of physical systems in nature. Finally, we show that in the heart, phase synchronization induces spatially out-of-phase AP duration alternans which drives wave break and reentry. These results suggest that cardiac tissue exhibits a phase transition that is required for subcellular Ca cycling defects to induce a life-threatening arrhythmia.


Assuntos
Sinalização do Cálcio , Miócitos Cardíacos , Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Átrios do Coração/metabolismo , Humanos , Miócitos Cardíacos/metabolismo
4.
Heart Rhythm O2 ; 2(4): 394-404, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430945

RESUMO

BACKGROUND: In March 2020, hydroxychloroquine (HCQ) alone or combined with azithromycin (AZM) was authorized as a treatment for COVID-19 in many countries. The therapy proved ineffective with long QT and deadly cardiac arrhythmia risks, illustrating challenges to determine the new safety profile of repurposed drugs. OBJECTIVE: To investigate proarrhythmic effects and mechanism of HCQ and AZM (combined and alone) with high doses of HCQ as in the COVID-19 clinical trials. METHODS: Proarrhythmic effects of HCQ and AZM are quantified using optical mapping with voltage-sensitive dyes in ex vivo Langendorff-perfused guinea pig (GP) hearts and with numerical simulations of a GP Luo-Rudy and a human O'Hara-Virag-Varro-Rudy models, for Epi, Endo, and M cells, in cell and tissue, incorporating the drug's effect on cell membrane ionic currents. RESULTS: Experimentally, HCQ alone and combined with AZM leads to long QT intervals by prolonging the action potential duration and increased spatial dispersion of action potential (AP) repolarization across the heart, leading to proarrhythmic discordant alternans. AZM alone had a lesser arrhythmic effect with less triangulation of the AP shape. Mathematical cardiac models fail to reproduce most of the arrhythmic effects observed experimentally. CONCLUSIONS: During public health crises, the risks and benefits of new and repurposed drugs could be better assessed with alternative experimental and computational approaches to identify proarrhythmic mechanisms. Optical mapping is an effective framework suitable to investigate the drug's adverse effects on cardiac cell membrane ionic channels at the cellular level and arrhythmia mechanisms at the tissue and whole-organ level.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35754517

RESUMO

Aims: Cardiac modeling in heart structures for the study of arrhythmia mechanisms requires the use of software that runs on supercomputers. Therefore, computational studies are limited to groups with access to computer clusters and personnel with high-performance computing experience. We present how to use and implement WebGL programs via a custom-written library to run and visualize simulations of the most complex ionic models in 2D and 3D, in real time, interactively using the multi-core GPU of a single computer. Methods: We use Abubu.js, a library we developed for solving partial differential equations such as those describing crystal growth and fluid flow, along with a newly implemented visualization algorithm, to simulate complex ionic cell models. By combining this library with JavaScript, we allow direct real-time interactions with simulations. We implemented: 1) modification of any model parameters and equations at any time, with direct access to the code while it runs, 2) electrode stimulation anywhere in the 2D/3D tissue with a mouse click, 3) saving the solution of the system at any time to re-initiate the dynamics from saved initial conditions, and 4) rotation/visualization of 3D structures at any angle. Results: As examples of this modeling platform, we implemented a phenomenological cell model and the human ventricular OVVR model (41 variables). In 2D we illustrate the dynamics in an annulus, disk, and square tissue; in 2D and 3D porcine ventricles, we show the initiation of functional/anatomical reentry, spiral wave dynamics in different regimes, initiation of early afterdepolarizations (EADs), and the effects of model parameter variations in real time. Conclusions: We present the first simulations of complex models in anatomical structures with enhanced visualization and extended interactivity that run on a single PC, without software downloads, and as fast as in real-time even for 3D full ventricles.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35754518

RESUMO

Diagnosis and localization of cardiac arrhythmias, especially supraventricular tachycardia (SVT), by inspecting intracardiac signals and performing pacing maneuvers is the core of electrophysiology studies. Acquiring and maintaining complex skill sets can be facilitated by using simulators, allowing the operator to practice in a safe and controlled setting. An electrophysiology simulator should not only display arrhythmias but it has to respond to the user's arbitrary inputs. While, in principle, it is possible to model the heart using a detailed anatomical and cellular model, such a system would be unduly complex and computationally intensive. In this paper, we describe a freely available web-based electrophysiology simulator (http://svtsim.com), which is composed of a visualization/interface unit and a heart model based on a dynamical network. In the network, nodes represent the points of interest, such as the sinus and the atrioventricular nodes, and links model the conduction system and pathways. The dynamics are encoded explicitly in the state machines attached to the nodes and links. Simulated intracardiac signals and surface ECGs are generated from the internal state of the heart model. Reentrant tachycardias, especially various forms of SVT, can emerge in this system in response to the user's actions in the form of pacing maneuvers. Additionally, the resulting arrhythmias respond realistically to various inputs, such as overdrive pacing and delivery of extra stimuli, cardioversion, ablation, and infusion of medications. For nearly a decade, svtsim.com has been used successfully to train electrophysiology practitioners in many institutions. We will present our experience regarding best practices in designing and using electrophysiology simulators for training and testing. We will also discuss the current trends in clinical cardiac electrophysiology and the anticipated next generation electrophysiology simulators.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35754521

RESUMO

The shape of the ECG depends on the lead positions but also on the distribution and dispersion of different cell types and their action potential (AP) durations and shapes. We present an interactive JavaScript program that allows fast simulations of the ECG by solving and displaying the dynamics of cardiac cells in tissue using a web browser. We use physiologically accurate ODE models of cardiac cells of different types including SA node, right and left atria, AV node, Purkinje, and right and left ventricular cells with dispersion that accounts for apex-to-base and epi-to-endo variations. The software allows for real-time variations for each cell type and their spatial range so as to identify how the shape of the ECG varies as a function of cell type, distribution, excitation duration and AP shape. The propagation of the wave is visualized in real time through all the regions as parameters are kept fixed or varied to modify ECG morphology. The code solves thousands of simulated cells in real time and is independent of operating system, so it can run on PCs, laptops, tablets and cellphones. This program can be used to teach students, fellows and the general public how and why lead positions and the different cell physiology in the heart affect the various features of the ECG.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35754522

RESUMO

Time series of spatially-extended two-dimensional recordings are the cornerstone of basic and clinical cardiac electrophysiology. The data source may be either multipolar catheters, multi-electrode arrays, optical mapping with the help of voltage and calcium-sensitive fluorescent dyes, or the output of simulation studies. The resulting data cubes (usually two spatial and one temporal dimension) are shared either as movie files or, after additional processing, various graphs and tables. However, such data products can only convey a limited view of the data. It will be beneficial if the data consumers can interactively process the data, explore different processing options and change its visualization. This paper presents the Unified Electrophysiology Mapping Framework (Unimapper) to facilitate the exchange of electrophysiology data. Its pedigree includes a Java-based optical mapping application. The core of Unimapper is a website and a collection of JavaScript utility functions for data import and visualization (including multi-channel visualization for simultaneous voltage/calcium mapping), basic image processing (e.g., smoothing), basic signal processing (e.g., signal detrending), and advanced processing (e.g., phase calculation using the Hilbert transform). Additionally, Unimapper can optionally use graphics processing units (GPUs) for computationally intensive operations. The Unimapper ecosystem also includes utility libraries for commonly used scientific programming languages (MATLAB, Python, and Julia) that allow the data producers to convert images and recorded signals into a standard format readable by Unimapper. Unimapper can act as a nexus to share electrophysiology data - whether recorded experimentally, clinically or generated by simulation - and enhance communication and collaboration among researchers.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35754523

RESUMO

Understanding cardiac arrhythmic mechanisms and developing new strategies to control and terminate them using computer simulations requires realistic physiological cell models with anatomically accurate heart structures. Furthermore, numerical simulations must be fast enough to study and validate model and structure parameters. Here, we present an interactive parallel approach for solving detailed cell dynamics in high-resolution human heart structures with a local PC's GPU. In vitro human heart MRI scans were manually segmented to produce 3D structures with anatomically realistic electrophysiology. The Abubu.js library was used to create an interactive code to solve the OVVR human ventricular cell model and the FDA extension of the model in the human MRI heart structures, allowing the simulation of reentrant waves and investigation of their dynamics in real time. Interactive simulations of a physiological cell model in a detailed anatomical human heart reveals propagation of waves through the fine structures of the trabeculae and pectinate muscle that can perpetuate arrhythmias, thereby giving new insights into effects that may need to be considered when planning ablation and other defibrillation methods.

10.
Front Physiol ; 11: 585400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329034

RESUMO

Computational modeling of cardiac electrophysiology (EP) has recently transitioned from a scientific research tool to clinical applications. To ensure reliability of clinical or regulatory decisions made using cardiac EP models, it is vital to evaluate the uncertainty in model predictions. Model predictions are uncertain because there is typically substantial uncertainty in model input parameters, due to measurement error or natural variability. While there has been much recent uncertainty quantification (UQ) research for cardiac EP models, all previous work has been limited by either: (i) considering uncertainty in only a subset of the full set of parameters; and/or (ii) assigning arbitrary variation to parameters (e.g., ±10 or 50% around mean value) rather than basing the parameter uncertainty on experimental data. In our recent work we overcame the first limitation by performing UQ and sensitivity analysis using a novel canine action potential model, allowing all parameters to be uncertain, but with arbitrary variation. Here, we address the second limitation by extending our previous work to use data-driven estimates of parameter uncertainty. Overall, we estimated uncertainty due to population variability in all parameters in five currents active during repolarization: inward potassium rectifier, transient outward potassium, L-type calcium, rapidly and slowly activating delayed potassium rectifier; 25 parameters in total (all model parameters except fast sodium current parameters). A variety of methods was used to estimate the variability in these parameters. We then propagated the uncertainties through the model to determine their impact on predictions of action potential shape, action potential duration (APD) prolongation due to drug block, and spiral wave dynamics. Parameter uncertainty had a significant effect on model predictions, especially L-type calcium current parameters. Correlation between physiological parameters was determined to play a role in physiological realism of action potentials. Surprisingly, even model outputs that were relative differences, specifically drug-induced APD prolongation, were heavily impacted by the underlying uncertainty. This is the first data-driven end-to-end UQ analysis in cardiac EP accounting for uncertainty in the vast majority of parameters, including first in tissue, and demonstrates how future UQ could be used to ensure model-based decisions are robust to all underlying parameter uncertainties.

11.
Heart Rhythm ; 17(9): 1445-1451, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479900

RESUMO

BACKGROUND: Early during the current coronavirus disease 19 (COVID-19) pandemic, hydroxychloroquine (HCQ) received a significant amount of attention as a potential antiviral treatment, such that it became one of the most commonly prescribed medications for COVID-19 patients. However, not only has the effectiveness of HCQ remained questionable, but mainly based on preclinical and a few small clinical studies, HCQ is known to be potentially arrhythmogenic, especially as a result of QT prolongation. OBJECTIVE: The purpose of this study was to investigate the arrhythmic effects of HCQ, as the heightened risk is especially relevant to COVID-19 patients, who are at higher risk for cardiac complications and arrhythmias at baseline. METHODS: An optical mapping technique utilizing voltage-sensitive fluorescent dyes was used to determine the arrhythmic effects of HCQ in ex vivo guinea pig and rabbit hearts perfused with the upper therapeutic serum dose of HCQ (1000 ng/mL). RESULTS: HCQ markedly increased action potential dispersion, resulted in development of repolarization alternans, and initiated polymorphic ventricular tachycardia. CONCLUSION: The study results further highlight the proarrhythmic effects of HCQ.


Assuntos
Antimaláricos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hidroxicloroquina/farmacologia , Animais , Estimulação Cardíaca Artificial , Infecções por Coronavirus/tratamento farmacológico , Cobaias , Coração/diagnóstico por imagem , Coelhos , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à Voltagem , Tratamento Farmacológico da COVID-19
12.
Sci Adv ; 5(3): eaav6019, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944861

RESUMO

Cardiac dynamics modeling has been useful for studying and treating arrhythmias. However, it is a multiscale problem requiring the solution of billions of differential equations describing the complex electrophysiology of interconnected cells. Therefore, large-scale cardiac modeling has been limited to groups with access to supercomputers and clusters. Many areas of computational science face similar problems where computational costs are too high for personal computers so that supercomputers or clusters currently are necessary. Here, we introduce a new approach that makes high-performance simulation of cardiac dynamics and other large-scale systems like fluid flow and crystal growth accessible to virtually anyone with a modest computer. For cardiac dynamics, this approach will allow not only scientists and students but also physicians to use physiologically accurate modeling and simulation tools that are interactive in real time, thereby making diagnostics, research, and education available to a broader audience and pushing the boundaries of cardiac science.


Assuntos
Arritmias Cardíacas/fisiopatologia , Telefone Celular , Simulação por Computador , Microcomputadores , Algoritmos , Arritmias Cardíacas/diagnóstico , Eletrofisiologia Cardíaca/métodos , Coração/fisiopatologia , Humanos , Modelos Cardiovasculares , Reprodutibilidade dos Testes
13.
Chaos Solitons Fractals ; 121: 6-29, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34764627

RESUMO

The study of complex systems has emerged as an important field with many discoveries still to be made. Computer simulation and visualization provide important tools for studying complex dynamics including chaos, solitons, and fractals, but available computing power has been a limiting factor. In this work, we describe a novel and highly efficient computing and visualization paradigm using a Web Graphics Library (WebGL 2.0) methodology along with our newly developed library (Abubu.js). Our approach harnesses the power of widely available and highly parallel graphics cards while maintaining ease of use by simplifying programming through hiding implementation details, running in a web browser without the need for compilation, and avoiding the use of plugins. At the same time, it allows for interactivity, such as changing parameter values on the fly, and its computing is so fast that zooming in on a region of a fractal like the Mandelbrot set can incur no delay despite having to recalculate values for the entire plane. We demonstrate our approach using a wide range of complex systems that display dynamics from fractals to standing and propagating waves in 1, 2 and 3 dimensions. We also include some models with instabilities that can lead to chaotic dynamics. For all the examples shown here we provide links to the codes for anyone to use, modify and further develop with other models. Overall, the enhanced visualization and computation capabilities provided by WebGL together with Abubu.js have great potential to facilitate new discoveries about complex systems.

14.
Chaos ; 29(12): 123104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893636

RESUMO

The spatiotemporal dynamics of complex systems have been studied traditionally and visualized numerically using high-end computers. However, due to advances in microcontrollers, it is now possible to run what once were considered large-scale simulations using a very small and inexpensive single integrated circuit that can furthermore send and receive information to and from the outside world in real time. In this paper, we show how microcontrollers can be used to perform simulations of nonlinear ordinary differential equations with spatial coupling and to visualize their dynamics using arrays of light-emitting diodes and/or touchscreens. We demonstrate these abilities using three different models: two reaction-diffusion models (one neural and one cardiac) and a generic model of network oscillators. These models are commonly used to simulate various phenomena in biophysical systems, including bifurcations, waves, chaos, and synchronization. We also demonstrate how simple it is to integrate real-time user interaction with the simulations by showing examples with a light sensor, touchscreen, and web browser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...