Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 269: 120538, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246740

RESUMO

New therapeutic strategies are needed for the growing unmet clinical needs in liver disease and fibrosis. Platelet activation and PDGF activity are recognized as important therapeutic targets; however, no therapeutic approach has yet addressed these two upstream drivers of liver fibrosis. We therefore designed a matrix-targeting glycan therapeutic, SBR-294, to inhibit collagen-mediated platelet activation while also inhibiting PDGF activity. Herein we describe the synthesis and characterization of SBR-294 and demonstrate its potential therapeutic benefits in vitro and in vivo. In vitro SBR-294 was found to bind collagen (EC50 = 23 nM), thereby inhibiting platelet-collagen engagement (IC50 = 60 nM). Additionally, SBR-294 was found to bind all PDGF homodimeric isoforms and to inhibit PDGF-BB mediated hepatic stellate cell activation and proliferation. Translating these mechanisms in vivo, SBR-294 reduced fibrosis by up to 54% in the CCl4 mouse model (p = 0.0004), as measured by Sirius red histological analysis. Additional fibrosis measurements were also supportive of the therapeutic benefit in this model. These results support the therapeutic benefit of platelet and PDGF antagonism and warrant further investigation of SBR-294 as a potential treatment for liver fibrosis.


Assuntos
Cirrose Hepática , Fator de Crescimento Derivado de Plaquetas , Animais , Plaquetas , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos , Polissacarídeos
2.
Sci Adv ; 2(8): e1600691, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27602403

RESUMO

The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)-derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


Assuntos
Adenosina/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Técnicas de Cultura de Células , Humanos , Especificidade de Órgãos , Osteoblastos/efeitos dos fármacos , Medicina Regenerativa
3.
Artigo em Inglês | MEDLINE | ID: mdl-26618155

RESUMO

Human embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors. Here, we show that CaP matrix-driven osteogenic differentiation of hESCs occurs through A2b adenosine receptor (A2bR). The inhibition of the receptor with an A2bR-specific antagonist attenuated mineralized matrix-mediated osteogenic differentiation of hESCs. In addition, when cultured on matrices in an environment deficient of CaP minerals, exogenous adenosine promoted osteogenic differentiation of hESCs, but was attenuated by the inhibition of A2bR. Such synthetic matrices that intrinsically support osteogenic commitment of hESCs are not only beneficial for bone tissue engineering but can also be used as a platform to study the effect of the physical and chemical cues to the extracellular milieu on stem cell commitment. Insights into the cell signaling during matrix-induced differentiation of stem cells will also help define the key processes and enable discovery of new targets that promote differentiation of pluripotent stem cells for bone tissue engineering.

4.
ACS Biomater Sci Eng ; 1(1): 7-12, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26280019

RESUMO

The ability of human embryonic stem cells (hESCs) and their derivatives to differentiate and contribute to tissue repair has enormous potential to treat various debilitating diseases. However, improving the in vivo viability and function of the transplanted cells, a key determinant of translating cell-based therapies to the clinic, remains a daunting task. Here, we develop a hybrid biomaterial consisting of hyaluronic acid (HA) grafted with 6-aminocaproic acid moieties (HA-6ACA) to improve cell delivery and their subsequent in vivo function using skeletal muscle as a model system. Our findings show that the biomimetic material-assisted delivery of hESC-derived myogenic progenitor cells into cardiotoxin-injured skeletal muscles of NOD/SCID mice significantly promotes survival and engraftment of transplanted cells in a dose-dependent manner. The donor cells were found to contribute to the regeneration of damaged muscle fibers and to the satellite cell (muscle specific stem cells) compartment. Such biomimetic cell delivery vehicles that are cost-effective and easy-to-synthesize could play a key role in improving the outcomes of other stem cell-based therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...