Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(41)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37343532

RESUMO

In the current work, we report on the synthesizing of a series of novel nanocomposite materials obtained by functionalizing the SBA-15 silica matrix with anchored iron phosphonate molecules and the following thermal treatment. The obtained results reveal the formation of a unique amorphic layer of Fe-based compounds on the surface of silica walls of SBA-15 channels as a result of the organic groups' decomposition after moderate thermal treatment. Due to their unique structure, represented in an active Fe-containing amorphous coating spread over a large surface area, these materials are of great interest for their potential applications in fields such as catalysis, adsorption, and non-linear optics. The obtained materials remain amorphous, preserving the SBA-15 mesoporous structure up to temperatures of approximately 800 °C, after which the partial melting of the silica backbone is observed with the simultaneous formation of nanocrystals inside the newly-formed glassy mass. All obtained materials were characterized using such techniques as thermogravimetry, transmission and scanning electron microscopy combined with energy dispersive x-ray spectroscopy mapping, Raman spectroscopy, N2sorption analysis, x-ray diffraction, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and SQUID measurements.

2.
Materials (Basel) ; 14(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361274

RESUMO

We studied the morphology, structure, and magnetic properties of Fe nanowires that were electrodeposited as a function of the electrolyte temperature. The nucleation mechanism followed instantaneous growth. At low temperatures, we observed an increase of the total charge reduced into the templates, thus suggesting a significant increase in the degree of pore filling. Scanning electron microscopy images revealed smooth nanowires without any characteristic features that would differentiate their morphology as a function of the electrolyte temperature. X-ray photoelectron spectroscopy studies indicated the presence of a polycarbonate coating that covered the nanowires and protected them against oxidation. The X-ray diffraction measurements showed peaks coming from the polycrystalline Fe bcc structure without any traces of the oxide phases. The crystallite size decreased with an increasing electrolyte temperature. The transmission electron microscopy measurements proved the fine-crystalline structure and revealed elongated crystallite shapes with a columnar arrangement along the nanowire. Mössbauer studies indicated a deviation in the magnetization vector from the normal direction, which agrees with the SQUID measurements. An increase in the electrolyte temperature caused a rise in the out of the membrane plane coercivity. The studies showed the oxidation resistance of the Fe nanowires deposited at elevated electrolyte temperatures.

3.
Materials (Basel) ; 14(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300805

RESUMO

Materials based on Ni-Co-Fe alloys, due to their excellent magnetic properties, attract great attention in nanotechnology, especially as candidates for high-density magnetic recording media and other applications from spintronic to consumer electronics. In this study, Ni-Co-Fe nanocrystalline coatings were electrodeposited from citrate-sulfate baths with the Ni2+:Co2+:Fe2+ ion concentration ratios equal to 15:1:1, 15:2:1, and 15:4:1. The effect of the composition of the bath on the morphology, microstructure, chemical composition, microhardness, and magnetic properties of the coatings was examined. Scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffractometry (XRD), and energy dispersive X-ray spectroscopy (EDS) were used to study surface morphology, microstructure, chemical, and phase composition. Isothermal cross-sections of the Ni-Co-Fe ternary equilibrium system for the temperature of 50 °C and 600 °C were generated using the FactSage package. Magnetic properties were analyzed by a superconducting quantum interference device magnetometer (SQUID). All the coatings were composed of a single phase being face-centered cubic (fcc) solid solution. They were characterized by a smooth surface with globular morphology and a nanocrystalline structure of grain diameter below 30 nm. It was determined that Ni-Co-Fe coatings exhibit high hardness above 4.2 GPa. The measurements of hysteresis loops showed a significant value of magnetization saturation and small coercivity. The microstructure and properties of the obtained nanocrystalline coatings are interesting in terms of their future use in micromechanical devices (MEMS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...