Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 23(2): 469-483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38017302

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstructs flow and increases pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the small pulmonary arteries due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we applied a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) approach to investigate the impact of CTEPH on pulmonary artery stiffening, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) in extralobar (main, right, and left) pulmonary arteries and intralobar (distal to the extralobar) arteries. Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar and intralobar arteries. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI, quantified by the novel parameter φ , which is related to thrombogenicity. Our analysis reveals a strong positive correlation between increases in mean pulmonary artery pressure (mPAP) and φ from baseline to CTEPH in individual subjects, which supports the suggestion that increased φ drives disease severity. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Animais , Humanos , Embolia Pulmonar/complicações , Hidrodinâmica , Artéria Pulmonar , Pulmão/irrigação sanguínea , Hemodinâmica
2.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577616

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstruct flow and increase pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the pulmonary vasculature due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we developed a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) models to investigate the impact of CTEPH on pulmonary artery stiffening, time averaged wall shear stress (TAWSS), and oscillatory shear index (OSI). Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar (main, right and left pulmonary arteries) and intralobar vessels. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression, including the combination of low mean wall shear stress with high oscillation. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...