Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Comput Aided Drug Des ; 18(2): 95-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379159

RESUMO

BACKGROUND: The fragment-to-fragment approach for the estimation of the biological affinity of the pharmacophores with biologically active molecules has been proposed. It is the next step in the elaboration of molecular docking and using the quantum-chemical methods for the complex modeling of pharmacophores with biomolecule fragments. METHODS: The parameter φ 0 was used to estimate the contribution of π-electron interactions in biological affinity. It is directly related to the position of the frontier levels and reflects the donor-acceptor properties of the pharmacophores and stabilization energy of the [Pharm꞉BioM] complex Results: By using quantum-chemical calculations, it was found that the stacking interaction of oxazoles with phenylalanine is 7-11 kcal/mol, while the energy of hydrogen bonding of oxazoles with the amino group of lysine is 5-9 kcal/mol. The fragment-to-fragment approach can be applied for the investigation of the dependence of biological affinity on the electronic structure of pharmacophores.c Conclusion: The founded quantum-chemical regularities are confirmed with the structure-activity relationships of substituted oxazoles.


Assuntos
Elétrons , Oxazóis , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Oxazóis/química , Oxazóis/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...