Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238982

RESUMO

BACKGROUND: Oxidative stress (OS) could cause various COVID-19 complications. Recently, we have developed the Pouvoir AntiOxydant Total (PAOT®) technology for reflecting the total antioxidant capacity (TAC) of biological samples. We aimed to investigate systemic oxidative stress status (OSS) and to evaluate the utility of PAOT® for assessing TAC during the recovery phase in critical COVID-19 patients in a rehabilitation facility. MATERIALS AND METHODS: In a total of 12 critical COVID-19 patients in rehabilitation, 19 plasma OSS biomarkers were measured: antioxidants, TAC, trace elements, oxidative damage to lipids, and inflammatory biomarkers. TAC level was measured in plasma, saliva, skin, and urine, using PAOT and expressed as PAOT-Plasma, -Saliva, -Skin, and -Urine scores, respectively. Plasma OSS biomarker levels were compared with levels from previous studies on hospitalized COVID-19 patients and with the reference population. Correlations between four PAOT scores and plasma OSS biomarker levels were analyzed. RESULTS: During the recovery phase, plasma levels in antioxidants (γ-tocopherol, ß-carotene, total glutathione, vitamin C and thiol proteins) were significantly lower than reference intervals, whereas total hydroperoxides and myeloperoxidase (a marker of inflammation) were significantly higher. Copper negatively correlated with total hydroperoxides (r = 0.95, p = 0.001). A similar, deeply modified OSS was already observed in COVID-19 patients hospitalized in an intensive care unit. TAC evaluated in saliva, urine, and skin correlated negatively with copper and with plasma total hydroperoxides. To conclude, the systemic OSS, determined using a large number of biomarkers, was always significantly increased in cured COVID-19 patients during their recovery phase. The less costly evaluation of TAC using an electrochemical method could potentially represent a good alternative to the individual analysis of biomarkers linked to pro-oxidants.

2.
Diseases ; 7(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669655

RESUMO

Polyphenol compounds present in high quantity in wines are well-known to have potent cardio-protective properties through several biological mechanisms including antioxidant activity [1]. A large number of methods have been developed for evaluating the antioxidant capacity of food matrices. Most of them have, however, the disadvantage of being time consuming and require specific analytical protocols and devices. In the present study, we present the electrochemical PAOT (Pouvoir Antioxydant Total)-Liquid® Technology which can be easily used by winemakers for evaluating antioxidant activity of wine during all steps of making process. The methodology is based on the measurement of electric potential variation resulting from chemical reactions between wine polyphenols and a free radical mediator M• as source of oxidants. Total antioxidant activity as estimated by the PAOT-Liquid® activity was 6.8 fold higher in red wines (n = 14) when compared to rosé (n = 3) and white (n = 3) wines bought in a commercial market. Moreover, PAOT-Liquid® activity was highly correlated with total polyphenols content (TPC) of all wines (r = 0.9540, p < 0.0001) and the classical DPPH (2,2-diphenyl-1-picryhydrazyl) assay which is often used for evaluating antioxidant capacity of food matrices (r = 0.9102, p < 0.0001).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...