Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 173, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800127

RESUMO

The multistep differentiation process from hematopoietic stem cells through common myeloid progenitors into committed dendritic cell (DC) subsets remains to be fully addressed. These studies now show that Allograft Inflammatory Factor-1 (AIF1) is required for differentiation of classical DC type 1 (cDC1) subsets and monocyte-derived DC (Mo-DC). Phenotypic studies found that AIF1 expression increased in committed subsets differentiating from common myeloid progenitors (CMP). However, silencing AIF1 expression in hematopoietic stem progenitors restrained the capacity to differentiate into Mo-DC and cDC1 cell subsets under GM-CSF or Flt3-L stimuli conditions, respectively. This was further marked by restrained expression of IRF8, which is critical for development of Mo-DC and cDC1 subsets. As a result, absence of AIF1 restrained the cells at the Lin-CD117+FcγR-CD34+ CMP stage. Further biochemical studies revealed that abrogating AIF1 resulted in inhibition of the NFκB family member RelB expression and p38 MAPK phosphorylation during differentiation of Mo-DC. Lastly, protein binding studies identified that AIF1 interacts with protein kinase C (PKC) to influence downstream signaling pathways. Taken together, this is the first report showing a novel role of AIF1 as a calcium-responsive scaffold protein that supports IRF8 expression and interacts with PKC to drive NFκB-related RelB for successfully differentiating hematopoietic progenitor cells into cDC and Mo-DC subsets under Flt3-L and GM-CSF stimuli, respectively.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/fisiologia , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Fatores Reguladores de Interferon/metabolismo , Proteínas dos Microfilamentos/metabolismo , Monócitos/citologia , Fator de Transcrição RelB/metabolismo , Animais , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hematopoese/efeitos dos fármacos , Masculino , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Subunidade p50 de NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Front Immunol ; 8: 1502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167673

RESUMO

Allograft inflammatory factor-1 (AIF1) is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC) and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

3.
Sci Rep ; 6: 32301, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604151

RESUMO

Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.


Assuntos
Produtos Biológicos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Substâncias Macromoleculares/metabolismo , Sítios de Ligação/genética , Produtos Biológicos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/genética , Sistemas de Liberação de Medicamentos/métodos , Endocitose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Substâncias Macromoleculares/administração & dosagem , Microscopia de Fluorescência , Peptídeos/administração & dosagem , Peptídeos/genética , Peptídeos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo/métodos
4.
Expert Opin Biol Ther ; 16(2): 161-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26630128

RESUMO

INTRODUCTION: Cancer cells arise from normal cells that have incurred mutations in oncogenes and tumor suppressor genes. The mutations are often unique and not readily found in normal cells, giving rise to the opportunity of exploiting these mutations to induce synthetic lethality. Synthetic lethality occurs when inhibition or mutation in two or more separate genes leads to cell death while inhibition or mutations of either gene alone has no lethal effect on the cell. Using RNA interference (RNAi) to identify synthetic lethality has become a growingly popular screening approach. AREAS COVERED: In this review, we cover the use of RNAi therapeutics to induce synthetic lethality in cancer. Additionally, we discuss several select small molecule inhibitors that were identified or verified by RNAi that induce synthetic lethality in specific cancers. We also discuss the identification of novel synthetic lethal combinations and the cancer model that the combination was validated in. Lastly, we discuss RNAi delivery vehicles. EXPERT OPINION: While RNAi therapeutics have great potential to treat cancer, due to the siRNA delivery problem, RNAi remains more commonly used as a tool, rather than a therapeutic. However, with emerging technological advances in the field of RNAi therapeutics, it is only a matter of time before RNAi-induced synthetic lethal clinical studies are initiated in cancer patients.


Assuntos
Neoplasias/genética , Neoplasias/terapia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Animais , Técnicas de Transferência de Genes/tendências , Genes Sintéticos/genética , Humanos , Mutação/genética , Oncogenes/genética , RNA Interferente Pequeno/administração & dosagem , Resultado do Tratamento
5.
Biochem Biophys Res Commun ; 454(2): 335-40, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25450398

RESUMO

Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent "inside-out" signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent "inside-out" signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype.


Assuntos
Actinas/genética , Neoplasias da Mama/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Integrina alfa6/genética , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases/genética , Actinas/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Variação Genética , Humanos , Integrina alfa6/análise , Integrina alfa6/metabolismo , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Regulação para Cima
6.
Nat Biotechnol ; 32(12): 1256-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25402614

RESUMO

RNA interference (RNAi) has great potential to treat human disease. However, in vivo delivery of short interfering RNAs (siRNAs), which are negatively charged double-stranded RNA macromolecules, remains a major hurdle. Current siRNA delivery has begun to move away from large lipid and synthetic nanoparticles to more defined molecular conjugates. Here we address this issue by synthesis of short interfering ribonucleic neutrals (siRNNs) whose phosphate backbone contains neutral phosphotriester groups, allowing for delivery into cells. Once inside cells, siRNNs are converted by cytoplasmic thioesterases into native, charged phosphodiester-backbone siRNAs, which induce robust RNAi responses. siRNNs have favorable drug-like properties, including high synthetic yields, serum stability and absence of innate immune responses. Unlike siRNAs, siRNNs avidly bind serum albumin to positively influence pharmacokinetic properties. Systemic delivery of siRNNs conjugated to a hepatocyte-specific targeting domain induced extended dose-dependent in vivo RNAi responses in mice. We believe that siRNNs represent a technology that will open new avenues for development of RNAi therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Pró-Fármacos/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Pró-Fármacos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Albumina Sérica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...