Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 72018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30074479

RESUMO

The P2X7 channel is involved in the pathogenesis of various CNS diseases. An increasing number of studies suggest its presence in neurons where its putative functions remain controversial for more than a decade. To resolve this issue and to provide a model for analysis of P2X7 functions, we generated P2X7 BAC transgenic mice that allow visualization of functional EGFP-tagged P2X7 receptors in vivo. Extensive characterization of these mice revealed dominant P2X7-EGFP protein expression in microglia, Bergmann glia, and oligodendrocytes, but not in neurons. These findings were further validated by microglia- and oligodendrocyte-specific P2X7 deletion and a novel P2X7-specific nanobody. In addition to the first quantitative analysis of P2X7 protein expression in the CNS, we show potential consequences of its overexpression in ischemic retina and post-traumatic cerebral cortex grey matter. This novel mouse model overcomes previous limitations in P2X7 research and will help to determine its physiological roles and contribution to diseases.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Receptores Purinérgicos P2X7/genética , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/química , Humanos , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia
2.
Proc Natl Acad Sci U S A ; 109(28): 11396-401, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22745172

RESUMO

P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120-I125) were specifically labeled by tetramethyl-rhodamine-maleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoyl-benzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP-induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain.


Assuntos
Cisteína/química , Receptores Purinérgicos P2X1/metabolismo , Animais , Cátions , Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , DNA Complementar/metabolismo , Eletrofisiologia/métodos , Cinética , Maleimidas/química , Microscopia de Fluorescência/métodos , Mutação , Oócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Rodaminas/química , Xenopus/metabolismo , Xenopus laevis/metabolismo
3.
Purinergic Signal ; 8(3): 375-417, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22547202

RESUMO

ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.


Assuntos
Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Secundária de Proteína/fisiologia , Receptores Purinérgicos P2X/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...