Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 238: 114465, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635947

RESUMO

With the rising cancer incidence and mortality globally, there is a prerequisite for effective design strategies towards the discovery of newer small molecular entities in chemotherapy. Hence, a series of new thiazolidinone-based indolo-/pyrroloazepinone conjugates was designed, synthesized via molecular hybridization, and evaluated for their in vitro cytotoxicity potential and DNA topoisomerase I and II inhibition. Among this series, conjugate 11g emerged as the most active compound with an IC50 value of 1.24 µM against A549 and 3.02-10.91 µM in the other tested cancer cell lines. Gratifyingly, 11g displayed 43-fold higher selectivity towards A549 cancer cells as compared to the non-cancer cells. Subsequently, conjugate 12g also demonstrated significant cytotoxicity against SK-MEL-28 cells. Basing the in vitro cytotoxicity results, SAR was established. Later, the conjugates 11g and 12g were further evaluated for their apoptosis-inducing ability, which was quantified by flow cytometric analysis, DNA-binding, Topo I inhibitory activity and IC50 value calculation. Molecular modeling studies provided profound insights about the binding nature of these compounds with DNA-Topo I complex. In silico ADME/T and prediction studies corroborated the drug-likeness of the two investigated compounds. TOPKAT toxicity profiling studies demonstrated the compounds' safety in many animal models with a minimal toxicological profile. Encouraging results obtained from in vitro and in silico studies could put this series of conjugates at the forefront of cancer drug discovery.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Animais , Antineoplásicos/química , Azepinas , Linhagem Celular Tumoral , Proliferação de Células , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Pirróis , Relação Estrutura-Atividade , Tiazolidinas , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia
2.
Bioorg Chem ; 122: 105706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240414

RESUMO

A series of 17 indolo/pyrroloazepinone-oxindole conjugates was synthesized and evaluated for their antiproliferative activity against a panel of selected human cancer cell lines including A549 (lung cancer), HCT116 (colon cancer), MCF7 (breast cancer), and SK-MEL-28 (melanoma). Among the synthesized molecules (14a-m and 15a-d), compound 14d displayed remarkable activity against A549, HCT116 and SK-MEL-28 cells with IC50 values < 4 µM with the best cytotoxicity and a 13-fold selectivity towards lung cancer cells (IC50 value of 2.33 µM) over the normal rat kidney cells (NRK). Further, 14d-mediated apoptosis affected the cellular and nuclear morphology of the cancer cells in a dose-dependent manner. Wound healing and clonogenic assays inferred the inhibition of cell growth and migration. Target-based studies of compound 14d corroborated its DNA-intercalative capability and Topo I inhibitory activity which have been fortified by molecular modeling studies. Finally, the drug-likeness of the potent compound was determined by performing in silico ADME/T prediction studies.


Assuntos
Antineoplásicos , Animais , Apoptose , Azepinas , Linhagem Celular Tumoral , Proliferação de Células , DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/farmacologia , Pirróis , Ratos , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 43: 116277, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175586

RESUMO

Efforts towards the development of potential anticancer agents, a new series of imidazo[1,2-a]pyridine-oxadiazole hybrids were synthesized and evaluated for their in vitro anticancer activity against lung cancer (A549) and prostate cancer (PC-3, DU-145) cell lines. Amongst the compounds tested, 6d showed the highest potency on A549 cells with an IC50 value of 2.8 ± 0.02 µM. Flow cytometric analysis of compound 6d treated A549 cells showed apoptosis induction by annexin-v/PI dual staining assay and the effect of 6d on different phases of cell cycle was also analyzed. Target based studies demonstrated the inhibition of tubulin polymerization by 6d at an IC50 value of 3.45 ± 0.51 µM and its effective binding with CT-DNA. Further, the molecular modelling studies revealed that 6d has a prominent binding affinity towards α/ß-tubulin receptor with admirable physico-chemical properties.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Desenho de Fármacos , Microtúbulos/efeitos dos fármacos , Oxidiazóis/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microtúbulos/metabolismo , Estrutura Molecular , Oxidiazóis/química , Polimerização/efeitos dos fármacos , Piridinas/química , Relação Estrutura-Atividade
4.
Org Biomol Chem ; 19(4): 738-764, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459333

RESUMO

Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.


Assuntos
Indóis/síntese química , Indóis/farmacologia , Animais , Técnicas de Química Sintética , Química Farmacêutica , Descoberta de Drogas , Humanos , Indóis/química
5.
Bioorg Chem ; 99: 103629, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32272367

RESUMO

We present here-in the molecular design and chemical synthesis of a novel series of diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition. The in vitro cytotoxicity of the synthesized compounds was evaluated against four human cancer cell lines including DU143, HEPG2, RKO and A549 in addition to non-cancerous immortalized human embryonic kidney cells (HEK-293). Compound 11 showed significant cytotoxicity against all the four human cancer cell lines with IC50 values ranging from 4.2 to 6.59 µM. 11 was also found to display 13-fold selective cytotoxicity towards A549 cancerous cells compared to the non-cancerous cell lines (HEK-293). The decatenation, DNA relaxation and intercalation assays revealed that the investigational compounds 10 and 11 act as highly selective inhibitors of Topo-I with DNA minor groove binding ability which was also supported by the results obtained from circular dichroism (CD), UV-visible spectroscopy and viscosity studies. Apoptosis induced by the lead 11 was observed using morphological observations, AO/EB and DAPI staining procedures. Further, dose-dependent increase in the depolarization of mitochondrial membrane was also observed through JC-1 staining. Annexin V-FITC/PI assay confirmed that 11 induced early apoptosis. Additionally, cell cycle analysis indicated that the cells were arrested at sub-G1 phase. Gratifyingly, in silico studies demonstrated promising interactions of 11 with the DNA and Topo I, thus supporting their potential DNA minor groove binding property with relatively selective Topo I inhibition compared to Topo II.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA de Neoplasias/efeitos dos fármacos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Azepinas/síntese química , Azepinas/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
6.
Bioorg Chem ; 92: 103188, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450167

RESUMO

A series of certain benzyl/phenethyl thiazolidinone-indole hybrids were synthesized for the study of anti-proliferative activity against A549, NCI-H460 (lung cancer), MDA-MB-231 (breast cancer), HCT-29 and HCT-15 (colon cancer) cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found that compound G37 displayed highest cytotoxicity with IC50 value of 0.92 ±â€¯0.12 µM towards HCT-15 cancer cell line among all the synthesized compounds. Moreover, compound G37 was also tested on normal human lung epithelial cells (L132) and was found to be safe in contrast to HCT-15 cells. The lead compound G37 showed significant G2/M phase arrest in HCT-15 cells. Additionally, compound G37 significantly inhibited tubulin polymerization with IC50 value of 2.92 ±â€¯0.23 µM. Mechanistic studies such as acridine orange/ethidium bromide (AO/EB) dual staining, DAPI nuclear staining, annexinV/propidium iodide dual staining, clonogenic growth inhibition assays inferred that compound G37 induced apoptotic cell death in HCT-15 cells. Moreover, loss of mitochondrial membrane potential with elevated intracellular ROS levels was observed by compound G37. These compounds bind at the active pocket of the α/ß-tubulin with higher number of stable hydrogen bonds, hydrophobic and arene-cation interactions confirmed by molecular modeling studies.


Assuntos
Antineoplásicos/síntese química , Benzeno/química , Indóis/síntese química , Tiazolidinas/química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia
7.
Bioorg Med Chem ; 27(5): 708-720, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679134

RESUMO

A series of new pyrazole linked benzothiazole-ß-naphthol derivatives were designed and synthesized using a simple, efficient and ecofriendly route under catalyst-free conditions in good to excellent yields. These derivatives were evaluated for their cytotoxicity on selected human cancer cell lines. Among those, the derivatives 4j, 4k and 4l exhibited considerable cytotoxicity with IC50 values ranging between 4.63 and 5.54 µM against human cervical cancer cells (HeLa). Structure activity relationship was elucidated by varying different substituents on benzothiazoles and pyrazoles. Further, flow cytometric analysis revealed that these derivatives induced cell cycle arrest in G2/M phase and spectroscopic studies such as UV-visible, fluorescence and circular dichroism studies showed that these derivatives exhibited good DNA binding affinity. Additionally, these derivatives can effectively inhibit the topoisomerase I activity. Viscosity studies and molecular docking studies demonstrated that the derivatives bind with the minor groove of the DNA.


Assuntos
Benzotiazóis/farmacologia , Naftóis/farmacologia , Pirazóis/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Bisbenzimidazol/farmacologia , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Naftóis/síntese química , Naftóis/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...