Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(24): 16067-16077, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125981

RESUMO

A strategy for the synthesis of a gold-based single-atom catalyst (SAC) via a one-step room temperature reduction of Au(III) salt and stabilization of Au(I) ions on nitrile-functionalized graphene (cyanographene; G-CN) is described. The graphene-supported G(CN)-Au catalyst exhibits a unique linear structure of the Au(I) active sites promoting a multistep mode of action in dehydrogenative coupling of organosilanes with alcohols under mild reaction conditions as proven by advanced XPS, XAFS, XANES, and EPR techniques along with DFT calculations. The linear structure being perfectly accessible toward the reactant molecules and the cyanographene-induced charge transfer resulting in the exclusive Au(I) valence state contribute to the superior efficiency of the emerging two-dimensional SAC. The developed G(CN)-Au SAC, despite its low metal loading (ca. 0.6 wt %), appear to be the most efficient catalyst for Si-H bond activation with a turnover frequency of up to 139,494 h-1 and high selectivities, significantly overcoming all reported homogeneous gold catalysts. Moreover, it can be easily prepared in a multigram batch scale, is recyclable, and works well toward more than 40 organosilanes. This work opens the door for applications of SACs with a linear structure of the active site for advanced catalytic applications.

3.
Small ; 18(38): e2201712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026533

RESUMO

Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .

4.
Small ; 17(16): e2006477, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33783134

RESUMO

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

5.
Chem Sci ; 13(1): 111-117, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35059158

RESUMO

A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines including N-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.

6.
Adv Mater ; 31(17): e1900323, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30811705

RESUMO

Single-atom catalysts (SACs) aim at bridging the gap between homogeneous and heterogeneous catalysis. The challenge is the development of materials with ligands enabling coordination of metal atoms in different valence states, and preventing leaching or nanoparticle formation. Graphene functionalized with nitrile groups (cyanographene) is herein employed for the robust coordination of Cu(II) ions, which are partially reduced to Cu(I) due to graphene-induced charge transfer. Inspired by nature's selection of Cu(I) in enzymes for oxygen activation, this 2D mixed-valence SAC performs flawlessly in two O2 -mediated reactions: the oxidative coupling of amines and the oxidation of benzylic CH bonds toward high-value pharmaceutical synthons. High conversions (up to 98%), selectivities (up to 99%), and recyclability are attained with very low metal loadings in the reaction. The synergistic effect of Cu(II) and Cu(I) is the essential part in the reaction mechanism. The developed strategy opens the door to a broad portfolio of other SACs via their coordination to various functional groups of graphene, as demonstrated by successful entrapment of FeIII /FeII single atoms to carboxy-graphene.

7.
Chempluschem ; 82(3): 467-473, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962015

RESUMO

Hexagonal mesoporous silica (HMS)-supported copper oxides (CuO/HMS) have been prepared by a sol-gel method and characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy, N2 sorption, inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), H2 temperature-programed reduction (TPR), NH3 temperature-programed desorption (TPD), and high-resolution (HR)-TEM techniques. An analysis of these results revealed a mesoporous material system with a high surface area (974 m2 g-1 ) and uniform pore-size distribution. The catalytic efficacy of CuO on the HMS support with varying Cu loadings (1, 3, 5, 10, and 15 wt %) was investigated for the transformation of aldehydes to primary amides; 3 wt % CuO/HMS exhibited good catalytic performance with good to excellent yields of amides (60-92 %) in benign aqueous medium. The intrinsically heterogeneous catalyst could be recovered after the reaction and reused without any noticeable loss in activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...