Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 252: 114635, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787687

RESUMO

In our daily life, as consumers we are constantly made aware of the impact of pesticides and other modifications to food products derived from genetically modified organisms (GMO's) that have an impact on human health. In our connected world, there is an immense interest for on-demand information about food quality prior to consumption. The gold standard method to detect pesticides or GMOs residues in food is complex and is not amenable to rapid consumer use. In this study, we demonstrate the feasibility of an electrochemical portable sensing approach for the simultaneous direct detection of spiked pesticides chlorpyrifos (Chlp) and GMOs protein Cry1Ab in real edamame soy matrix. The immunoassay based two-plex sensing platform was fabricated using respective antibody's Chlp on one side and Cry1Ab on other side. A simple lab-on-kitchen level preparation of matrix has been demonstrated and sensor response was tested using non-faradaic electrochemical impedance spectroscopy (EIS), which showed a linear response in Cry1Ab/Chlp concentrations from 0.3 ng/mL to 243 ng/mL with limit of detection 0.3 ng /mL for both the target antigens (Cry1Ab and Chlp) respectively. The spiked and recovery test results fall within ± 20% error in real sample matrix which demonstrates the performance of the our platform with maximum residue limit (MRL) for the given targets. Such electrochemical portable multi-analyte direct sensing tool with simple matrix processing protocol can be a future commercial field-testing tool for use at everyday consumer level.


Assuntos
Técnicas Biossensoriais , Clorpirifos , Nanopartículas Metálicas , Praguicidas , Humanos , Praguicidas/análise , Plantas Geneticamente Modificadas/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Nanopartículas Metálicas/química , Clorpirifos/metabolismo
2.
Front Chem ; 9: 782252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917590

RESUMO

Using pesticides is a common agricultural and horticultural practice to serve as a control against weeds, fungi, and insects in plant systems. The application of these chemical agents is usually by spraying them on the crop or plant. However, this methodology is not highly directional, and so only a fraction of the pesticide actually adsorbs onto the plant, and the rest seeps through into the soil base contaminating its composition and eventually leaching into groundwater sources. Electrochemical sensors which are more practical for in situ analysis used for pesticide detection in soil runoff systems are still in dearth, while the ones published in the literature are attributed with complex sensor modification/functionalization and preprocessing of samples. Hence, in this work, we present a highly intuitive electroanalytical sensor approach toward rapid (10 min), on-demand screening of commonly used pesticides-glyphosate and atrazine-in soil runoff. The proposed sensor functions based on the affinity biosensing mechanism driven via thiol cross-linker and antibody receptors that holistically behaves as a recognition immunoassay stack that is specific and sensitive to track test pesticide analytes. Then, this developed sensor is integrated further to create a pesticide-sensing ecosystem using a front-end field-deployable smart device. The method put forward in this work is compared and validated against a standard laboratory potentiostat instrument to determine efficacy, feasibility, and robustness for a point-of-use (PoU) setting yielding LoD levels of 0.001 ng/ml for atrazine and 1 ng/ml for glyphosate. Also, the ML model integration resulted in an accurate prediction rate of ≈80% in real soil samples. Therefore, a universal pesticide screening analytical device is designed, fabricated, and tested for pesticide assessment in real soil runoff samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...