Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31253715

RESUMO

During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aß sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.


Assuntos
Axônios/fisiologia , Canais de Cálcio Tipo L/fisiologia , Drosophila/fisiologia , Interneurônios/fisiologia , Condução Nervosa/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Potenciais de Ação/fisiologia , Animais , Drosophila/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino
2.
Neurobiol Dis ; 124: 311-321, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529489

RESUMO

Accumulation of normal or mutant human Tau isoforms in Central Nervous System (CNS) neurons of vertebrate and invertebrate models underlies pathologies ranging from behavioral deficits to neurodegeneration that broadly recapitulate human Tauopathies. Although some functional differences have begun to emerge, it is still largely unclear whether normal and mutant Tau isoforms induce differential effects on the synaptic physiology of CNS neurons. We use the oligosynaptic Giant Fiber System in the adult Drosophila CNS to address this question and reveal that 3R and 4R isoforms affect distinct synaptic parameters. Whereas 0N3R increased failure rate upon high frequency stimulation, 0N4R compromised stimulus conduction and response speed at a specific cholinergic synapse in an age-dependent manner. In contrast, accumulation of the R406W mutant of 0N4R induced mild, age-dependent conduction velocity defects. Because 0N4R and its mutant isoform are expressed equivalently, this demonstrates that the defects are not merely consequent of exogenous human Tau accumulation and suggests distinct functional properties of 3R and 4R isoforms in cholinergic presynapses.


Assuntos
Sistema Nervoso Central/fisiopatologia , Sinapses/metabolismo , Tauopatias/fisiopatologia , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Drosophila , Feminino , Humanos , Interneurônios/patologia , Interneurônios/fisiologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Isoformas de Proteínas , Sinapses/patologia , Tauopatias/metabolismo , Tauopatias/patologia
3.
J Neurosci ; 37(45): 10971-10982, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28986465

RESUMO

Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combines in situ electrophysiology with genetic and pharmacological intervention in larval Drosophila melanogaster of both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons. In situ patch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during crawling-like motor patterns in semi-intact animals. Genetic and acute pharmacological manipulations suggest that prolonged burst durations are caused by dendritically localized Dmca1D channels, which activate upon cholinergic synaptic input and amplify EPSPs, thus indicating a conserved function of dendritic L-type channels from Drosophila to vertebrates. By contrast, maximum intraburst firing rates require axonal calcium influx through Dmca1D channels, likely to enhance sodium channel de-inactivation via a fast afterhyperpolarization through BK channel activation. Therefore, in unmyelinated Drosophila motoneurons different functions of axonal and dendritic L-type like calcium channels likely operate synergistically to maximize firing output during locomotion.SIGNIFICANCE STATEMENT Nervous system function depends on the specific excitabilities of different types of neurons. Excitability is largely shaped by different combinations of voltage-dependent ion channels. Despite a high degree of conservation, the huge diversity of ion channel types and their differential localization pose challenges in assigning distinct functions to specific channels across species. We find a conserved role, from fruit flies to mammals, for L-type calcium channels in augmenting motoneuron excitability. As in spinal cord, dendritic L-type channels amplify excitatory synaptic input. In contrast to spinal motoneurons, axonal L-type channels enhance firing rates in unmyelinated Drosophila motoraxons. Therefore, enhancing motoneuron excitability by L-type channels seems an old strategy, but localization and interactions with other channels are tuned to species-specific requirements.


Assuntos
Axônios/fisiologia , Canais de Cálcio/fisiologia , Células Dendríticas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Animais , Canais de Cálcio/genética , Proteínas de Drosophila/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Larva/fisiologia , Canais de Sódio/efeitos dos fármacos , Sinapses/fisiologia
4.
J Physiol ; 593(22): 4871-88, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26332699

RESUMO

KEY POINTS: We combine in situ electrophysiology with genetic manipulation in Drosophila larvae aiming to investigate the role of fast calcium-activated potassium currents for motoneurone firing patterns during locomotion. We first demonstrate that slowpoke channels underlie fast calcium-activated potassium currents in these motoneurones. By conducting recordings in semi-intact animals that produce crawling-like movements, we show that slowpoke channels are required specifically in motoneurones for maximum firing rates during locomotion. Such enhancement of maximum firing rates occurs because slowpoke channels prevent depolarization block by limiting the amplitude of motoneurone depolarization in response to synaptic drive. In addition, slowpoke channels mediate a fast afterhyperpolarization that ensures the efficient recovery of sodium channels from inactivation during high frequency firing. The results of the present study provide new insights into the mechanisms by which outward conductances facilitate neuronal excitability and also provide direct confirmation of the functional relevance of precisely regulated slowpoke channel properties in motor control. ABSTRACT: A large number of voltage-gated ion channels, their interactions with accessory subunits, and their post-transcriptional modifications generate an immense functional diversity of neurones. Therefore, a key challenge is to understand the genetic basis and precise function of specific ionic conductances for neuronal firing properties in the context of behaviour. The present study identifies slowpoke (slo) as exclusively mediating fast activating, fast inactivating BK current (ICF ) in larval Drosophila crawling motoneurones. Combining in vivo patch clamp recordings during larval crawling with pharmacology and targeted genetic manipulations reveals that ICF acts specifically in motoneurones to sculpt their firing patterns in response to a given input from the central pattern generating (CPG) networks. First, ICF curtails motoneurone postsynaptic depolarizations during rhythmical CPG drive. Second, ICF is activated during the rising phase of the action potential and mediates a fast afterhyperpolarization. Consequently, ICF is required for maximal intraburst firing rates during locomotion, probably by allowing recovery from inactivation of fast sodium channels and decreased potassium channel activation. This contrasts the common view that outward conductances oppose excitability but is in accordance with reports on transient BK and Kv3 channel function in multiple types of vertebrate neurones. Therefore, our finding that ICF enhances firing rates specifically during bursting patterns relevant to behaviour is probably of relevance to all brains.


Assuntos
Potenciais de Ação , Proteínas de Drosophila/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Locomoção , Neurônios Motores/fisiologia , Animais , Geradores de Padrão Central/metabolismo , Geradores de Padrão Central/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Larva/metabolismo , Larva/fisiologia , Neurônios Motores/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(50): 18049-54, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453076

RESUMO

Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.


Assuntos
Comportamento Animal/fisiologia , Dendritos/fisiologia , Drosophila melanogaster/fisiologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Animais , Voo Animal/fisiologia , Imuno-Histoquímica , Microscopia Confocal , Técnicas de Patch-Clamp , Estatísticas não Paramétricas , Asas de Animais/inervação
6.
J Neurosci ; 32(1): 170-82, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22219280

RESUMO

Development of neural circuitry relies on precise matching between correct synaptic partners and appropriate synaptic strength tuning. Adaptive developmental adjustments may emerge from activity and calcium-dependent mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been associated with developmental synaptic plasticity, but its varied roles in different synapses and developmental stages make mechanistic generalizations difficult. In contrast, we focused on synaptic development roles of CaMKII in a defined sensory-motor circuit. Thus, different forms of CaMKII were expressed with UAS-Gal4 in distinct components of the giant fiber system, the escape circuit of Drosophila, consisting of photoreceptors, interneurons, motoneurons, and muscles. The results demonstrate that the constitutively active CaMKII-T287D impairs development of cholinergic synapses in giant fiber dendrites and thoracic motoneurons, preventing light-induced escape behavior. The locus of the defects is postsynaptic as demonstrated by selective expression of transgenes in distinct components of the circuit. Furthermore, defects among these cholinergic synapses varied in severity, while the glutamatergic neuromuscular junctions appeared unaffected, demonstrating differential effects of CaMKII misregulation on distinct synapses of the same circuit. Limiting transgene expression to adult circuits had no effects, supporting the role of misregulated kinase activity in the development of the system rather than in acutely mediating escape responses. Overexpression of wild-type transgenes did not affect circuit development and function, suggesting but not proving that the CaMKII-T287D effects are not due to ectopic expression. Therefore, regulated CaMKII autophosphorylation appears essential in central synapse development, and particular cholinergic synapses are affected differentially, although they operate via the same nicotinic receptor.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Fibras Colinérgicas/enzimologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/fisiologia , Fibras Colinérgicas/ultraestrutura , Drosophila melanogaster/citologia , Feminino , Masculino , Vias Neurais/citologia , Vias Neurais/enzimologia , Vias Neurais/crescimento & desenvolvimento , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...