Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928021

RESUMO

Drug repurposing, rebranding an existing drug for a new therapeutic indication, is deemed a beneficial approach for a quick and cost-effective drug discovery process by skipping preclinical, Phase 1 trials and pharmacokinetic studies. Several psychotropic drugs, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), were studied for their potential application in different diseases, especially in cancer therapy. Fluoxetine (FLX) is one of the most prescribed psychotropic agents from the SSRIs class for the treatment of several neuropsychiatric disorders with a favorable safety profile. FLX exhibited different oncolytic effects via mechanisms distinct from its main serotonergic activity. Taking advantage of its ability to rapidly penetrate the blood-brain barrier, FLX could be particularly useful in brain tumors. This was proved by different in vitro and in vivo experiments using FLX as a monotherapy or combination with temozolomide (TMZ) or radiotherapy. In this review of the literature, we summarize the potential pleiotropic oncolytic roles of FLX against different cancers, highlighting the multifaceted activities of FLX and its ability to interrupt cancer proliferation via several molecular mechanisms and even surmount multidrug resistance (MDR). We elaborated on the successful synergistic combinations such as FXR/temozolomide and FXR/raloxifene for the treatment of glioblastoma and breast cancer, respectively. We showcased beneficial pharmaceutical trials to load FLX onto carriers to enhance its safety and efficacy on cancer cells. This is the first review article extensively summarizing all previous FLX repurposing studies for the management of cancer.


Assuntos
Reposicionamento de Medicamentos , Fluoxetina , Humanos , Reposicionamento de Medicamentos/métodos , Fluoxetina/uso terapêutico , Fluoxetina/farmacologia , Animais , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Psicotrópicos/uso terapêutico , Psicotrópicos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256214

RESUMO

Lung squamous cell carcinoma (LUSC) is one of the most common malignancies. There is growing evidence that glycolysis-related genes play a critical role in tumor development, maintenance, and therapeutic response by altering tumor metabolism and thereby influencing the tumor immune microenvironment. However, the overall impact of glycolysis-related genes on the prognostic significance, tumor microenvironment characteristics, and treatment outcome of patients with LUSC has not been fully elucidated. We used The Cancer Genome Atlas (TCGA) dataset to screen glycolysis-related genes with prognostic effects in LUSC and constructed signature and nomogram models using Lasso and Cox regression, respectively. In addition, we analyzed the immune infiltration and tumor mutation load of the genes in the models. We finally obtained a total of glycolysis-associated DEGs. The signature model and nomogram model had good prognostic power for LUSC. Gene expression in the models was highly correlated with multiple immune cells in LUSC. Through this analysis, we have identified and validated for the first time that glycolysis-related genes are highly associated with the development of LUSC. In addition, we constructed the signature model and nomogram model for clinical decision-making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma de Células Escamosas/genética , Glicólise/genética , Neoplasias Pulmonares/genética , Pulmão , Microambiente Tumoral/genética
3.
Biomolecules ; 13(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892147

RESUMO

Nuclear receptors (NRs) constitute a superfamily of ligand-activated transcription factors with a paramount role in ubiquitous physiological functions such as metabolism, growth, and reproduction. Owing to their physiological role and druggability, NRs are deemed attractive and valid targets for medicinal chemists. Pentacyclic triterpenes (PTs) represent one of the most important phytochemical classes present in higher plants, where oleanolic acid (OA) is the most studied PTs representative owing to its multitude of biological activities against cancer, inflammation, diabetes, and liver injury. PTs possess a lipophilic skeleton that imitates the NRs endogenous ligands. Herein, we report a literature overview on the modulation of metabolic NRs by OA and its semi-synthetic derivatives, highlighting their health benefits and potential therapeutic applications. Indeed, OA exhibited varying pharmacological effects on FXR, PPAR, LXR, RXR, PXR, and ROR in a tissue-specific manner. Owing to these NRs modulation, OA showed prominent hepatoprotective properties comparable to ursodeoxycholic acid (UDCA) in a bile duct ligation mice model and antiatherosclerosis effect as simvastatin in a model of New Zealand white (NZW) rabbits. It also demonstrated a great promise in alleviating non-alcoholic steatohepatitis (NASH) and liver fibrosis, attenuated alpha-naphthol isothiocyanate (ANIT)-induced cholestatic liver injury, and controlled blood glucose levels, making it a key player in the therapy of metabolic diseases. We also compiled OA semi-synthetic derivatives and explored their synthetic pathways and pharmacological effects on NRs, showcasing their structure-activity relationship (SAR). To the best of our knowledge, this is the first review article to highlight OA activity in terms of NRs modulation.


Assuntos
Colestase , Ácido Oleanólico , Camundongos , Animais , Coelhos , Ácido Oleanólico/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Colestase/metabolismo
4.
Biomedicines ; 11(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893218

RESUMO

Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.

5.
Diagnostics (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428916

RESUMO

Background: Gastric cancer (GC) is considered the fifth most prevalent type of cancer and the third leading cause of cancer deaths worldwide. This in-depth investigation was performed to generate fresh concepts for the clinical classification, diagnosis, and prognostic evaluation of GC. Methods: The data were retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Unsupervised cluster analysis was used to divide up the GC patients using pyroptosis-related differentially expressed genes (DEGs), which were discovered to be significantly linked with GC prognosis. The therapeutic importance of pyroptosis in GC patients was discovered using PCA analysis of genes associated with pyroptosis. The models were then carefully scrutinized. Results: Three hub genes, ELANE, IL6, and TIRAP, exhibit significant predictive importance among the 15 pyroptosis-related genes. Unsupervised clustering analysis revealed that the DEGs were enriched in the pathway of cytokine-cytokine receptor interactions, and Clusters 1 and 2 had statistically distinct prognoses. PCA analysis revealed significant differences in the area under the curve, immunological checkpoints, immunogenic cell death, and prognostic value between the high- and low-risk groups. Conclusions: These two GC classification models, based on pyroptosis, have significant clinical value for patients with GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...