Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(4-2): 045315, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590556

RESUMO

Path integrals with complex actions are encountered for many physical systems ranging from spin- or mass-imbalanced atomic gases and graphene to quantum chromodynamics at finite density to the nonequilibrium evolution of quantum systems. Many computational approaches have been developed for tackling the sign problem emerging for complex actions. Among these, complex Langevin dynamics has the appeal of general applicability. One of its key challenges is the potential convergence of the dynamics to unphysical fixed points. The statistical sampling process at such a fixed point is not based on the physical action and hence leads to wrong predictions. Moreover, its unphysical nature is hard to detect due to the implicit nature of the process. In the present work we set up a general approach based on a Markov chain Monte Carlo scheme in an extended state space. In this approach we derive an explicit real sampling process for generalized complex Langevin dynamics. Subject to a set of constraints, this sampling process is the physical one. These constraints originate from the detailed-balance equations satisfied by the Monte Carlo scheme. This allows us to rederive complex Langevin dynamics from a new perspective and establishes a framework for the explicit construction of new sampling schemes for complex actions.

2.
Phys Rev E ; 101(6-1): 063304, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688507

RESUMO

A formulation of Langevin dynamics for discrete systems is derived as a class of generic stochastic processes. The dynamics simplify for a two-state system and suggest a network architecture which is implemented by the Langevin machine. The Langevin machine represents a promising approach to compute successfully quantitative exact results of Boltzmann distributed systems by LIF neurons. Besides a detailed introduction of the dynamics, different simplified models of a neuromorphic hardware system are studied with respect to a control of emerging sources of errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...