Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 31: 101891, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579910

RESUMO

BACKGROUND: Photodynamic therapy is a promising invention to treat infections and cancer where conventional treatments are insufficient and have many side effects. Photodynamic therapy is mainly emphasized as having minimal side effects on healthy cells during local applications, even so photosensitizer can accumulate in any cell and unwanted deaths may occur upon irradiation. This study focused on the degree of photodynamic action with indocyanine green against healthy cells, when it has phototoxic effects on pathogens. METHODS: Healthy mouse skin fibroblast and human skin keratinocyte cells were exposed to energy densities of 84 and 252 J/cm2 with 4, 10, 25, 50,100, 125 and 150 µg/mL indocyanine green which have efficiently killed gram-positive and gram-negative pathogens. Cell Viability, Lipid Peroxidation and Live/Dead Cell Staining analysis were performed to assess the phototoxicity with defined parameters on the healthy cells. RESULTS: 84 J/cm2 energy density was quite safe for keratinocytes with indocyanine green concentrations ranging from 4 to 125 µg/mL. When 252 J/cm2 energy density was used, most of the keratinocytes were damaged with any photosensitizer concentration. Fibroblasts only tolerate these energy densities together with 4 and 10 µg/mL indocyanine green. Increasing photosensitizer concentrations resulted in high phototoxic effect on them. CONCLUSION: Photodynamic therapy applications, which destroy pathogens, may also kill healthy eukaryotic cells. While some energy densities are safe, but others cause serious mortality rate on fibroblasts and keratinocytes. Therefore, harm to healthy cells related to photodynamic therapy parameters should be minimized by the optimization of energy densities and photosensitizer concentration properly.


Assuntos
Fotoquimioterapia , Animais , Fibroblastos , Verde de Indocianina/farmacologia , Queratinócitos , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
2.
Int J Biol Macromol ; 158: 819-825, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32339576

RESUMO

The indicator-based nucleic acid detection protocol is one of the major approaches to monitor the sequence-selective nucleic acid hybridization-mediated recognition events in biochemical analysis. The metal complex, cobalt phenanthroline, [Co(phen)33+], which is one of the electroactive indicators, interacts more with double stranded nucleic acids via intercalation. Thus, this interaction permits an increase at the electrochemical signal of [Co(phen)33+]. In our study, the interaction of metal complex, [Co(phen)33+] with nucleic acids was examined using pencil graphite electrodes (PGEs) in combination with differential pulse voltammetry (DPV) technique. The voltammetric detection of miRNA-34a was investigated based on the changes at the electrochemical signal of [Co(phen)33+] under optimized experimental conditions; such as accumulation potentialof metal complex and DNA probe concentration, hybridization time, target miRNA concentration. Furthermore, the selectivity of electrochemical miRNA-34a biosensor was studied in contrast to different miRNAs. The applicability of indicator-based biosensor specific to miRNA-34a was also presented by using total RNA samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...