Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Diagn Res ; 10(9): ZC91-ZC95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27790588

RESUMO

INTRODUCTION: Provisional restoration is an analytical component of fixed prosthodontics serving as a ground plan for the design of fixed dental prosthesis. Flexural strength is critical in case of long standing fixed dental prosthesis, to appreciate success of full mouth rehabilitation cases and temporomandibular joint dysfunction therapies. AIM: The present study was to evaluate the flexural strength of different provisional restorative resins used for prosthetic rehabilitation. MATERIALS AND METHODS: Forty identical samples (n=10 for each material) measuring 25mm×2mm×2mm according to ADA/ANSI specification no. 27 were fabricated using autopolymerizing Poly Methyl Methacrylate (PMMA) (Group A); heat activated PMMA (Group B); autopolymerizing Bis-GMA composite resin (Group C) and light activated Urethane Dimethacrylate Resin (UDMA) (Group D). For 14 days all these samples were stored in artificial saliva. Ten samples from each material were subjected to thermal cycling for 2500 cycles (5°C to 55°C). Later, a standard three point bending test was conducted on all the specimens with a universal testing machine at a crosshead speed of 0.75mm/min. Statistical analysis used included Kruskal-Wallis and Mann-Whitney U test. RESULTS: The mean flexural strength of specimens confirmed higher flexural strength for Group C (102.98 Mpa) followed by Group B (91.86 Mpa), Group A (79.13 Mpa) and Group D (60.01 Mpa). There were significant differences between any two materials tested (p <0.05). Comparison between mean flexural strength values between four groups revealed significant difference between the interim materials (p <0.05). CONCLUSION: The greatest flexural strength was observed for Bis-GMA composite resins followed by heat cure methacrylate resins, autopolymerizing methacrylate resins and was least for light cure resins. While fabricating provisional restorations, these greater values should be considered for better outcome of the treatment.

2.
J Clin Diagn Res ; 8(1): 236-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24596784

RESUMO

AIM: The aim of this study is to compare the shear bond strength between fiber reinforced composite post with three different composite core materials. MATERIALS AND METHODS: The materials used for the study were: 30 maxillary central incisors, pre fabricated fiber reinforced composite post (postec plus posts), Multi-core heavy body, Ti-core, Fluoro-core, Etchant gel, Silane coupling agent, Dentin bonding agent, Standardized gutta percha points, Rely-X dual cure composite resin. A total of 30 human maxillary central incisor were selected for this study. They were divided into three groups of 10 specimens each namely A, B and C. RESULTS: The results obtained were analyzed by using one way analysis (ANOVA) and Tukey Honestly Significant Difference and they showed highest mean shear bond strength for group C when compared with group A and group B. There is no significant difference in the shear bond strength values between group A and group B. CONCLUSION: The teeth restored with multicore HB showed highest shear bond strength. The teeth restored with Fluoro core showed lowest shear bond strength. No statistically significant difference exists between the shear bond strength values between Ti-core and Fluoro-core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...