Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189568

RESUMO

This study introduces a new method for identifying COVID-19 infections using blood test data as part of an anomaly detection problem by combining the kernel principal component analysis (KPCA) and one-class support vector machine (OCSVM). This approach aims to differentiate healthy individuals from those infected with COVID-19 using blood test samples. The KPCA model is used to identify nonlinear patterns in the data, and the OCSVM is used to detect abnormal features. This approach is semi-supervised as it uses unlabeled data during training and only requires data from healthy cases. The method's performance was tested using two sets of blood test samples from hospitals in Brazil and Italy. Compared to other semi-supervised models, such as KPCA-based isolation forest (iForest), local outlier factor (LOF), elliptical envelope (EE) schemes, independent component analysis (ICA), and PCA-based OCSVM, the proposed KPCA-OSVM approach achieved enhanced discrimination performance for detecting potential COVID-19 infections. For the two COVID-19 blood test datasets that were considered, the proposed approach attained an AUC (area under the receiver operating characteristic curve) of 0.99, indicating a high accuracy level in distinguishing between positive and negative samples based on the test results. The study suggests that this approach is a promising solution for detecting COVID-19 infections without labeled data.

2.
J Ambient Intell Humaniz Comput ; : 1-15, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132336

RESUMO

Recently, the hospital systems face a high influx of patients generated by several events, such as seasonal flows or health crises related to epidemics (e.g., COVID'19). Despite the extent of the care demands, hospital establishments, particularly emergency departments (EDs), must admit patients for medical treatments. However, the high patient influx often increases patients' length of stay (LOS) and leads to overcrowding problems within the EDs. To mitigate this issue, hospital managers need to predict the patient's LOS, which is an essential indicator for assessing ED overcrowding and the use of the medical resources (allocation, planning, utilization rates). Thus, accurately predicting LOS is necessary to improve ED management. This paper proposes a deep learning-driven approach for predicting the patient LOS in ED using a generative adversarial network (GAN) model. The GAN-driven approach flexibly learns relevant information from linear and nonlinear processes without prior assumptions on data distribution and significantly enhances the prediction accuracy. Furthermore, we classified the predicted patients' LOS according to time spent at the pediatric emergency department (PED) to further help decision-making and prevent overcrowding. The experiments were conducted on actual data obtained from the PED in Lille regional hospital center, France. The GAN model results were compared with other deep learning models, including deep belief networks, convolutional neural network, stacked auto-encoder, and four machine learning models, namely support vector regression, random forests, adaboost, and decision tree. Results testify that deep learning models are suitable for predicting patient LOS and highlight GAN's superior performance than the other models.

3.
Health Informatics J ; 27(2): 14604582211021649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34096378

RESUMO

Overcrowding in emergency departments (EDs) is a primary concern for hospital administration. They aim to efficiently manage patient demands and reducing stress in the ED. Detection of abnormal ED demands (patient flows) in hospital systems aids ED managers to obtain appropriate decisions by optimally allocating the available resources following patient attendance. This paper presents a monitoring strategy that provides an early alert in an ED when an abnormally high patient influx occurs. Anomaly detection using this strategy involves the amalgamation of autoregressive-moving-average (ARMA) time series models with the generalized likelihood ratio (GLR) chart. A nonparametric procedure based on kernel density estimation is employed to determine the detection threshold of the ARMA-GLR chart. The developed ARMA-based GLR has been validated through practical data from the ED at Lille Hospital, France. Then, the ARMA-based GLR method's performance was compared to that of other commonly used charts, including a Shewhart chart and an exponentially weighted moving average chart; it proved more accurate.


Assuntos
Serviço Hospitalar de Emergência , Hospitais , França , Humanos
4.
Chaos Solitons Fractals ; 139: 110247, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32982079

RESUMO

As the demand for medical cares has considerably expanded, the issue of managing patient flow in hospitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. This can lead to overcrowding and the degradation of the quality of the provided medical services. Thus, the accurate modeling and forecasting of ED visits are critical for efficiently managing the overcrowding problems and enable appropriate optimization of the available resources. This paper proposed an effective method to forecast daily and hourly visits at an ED using Variational AutoEncoder (VAE) algorithm. Indeed, the VAE model as a deep learning-based model has gained special attention in features extraction and modeling due to its distribution-free assumptions and superior nonlinear approximation. Two types of forecasting were conducted: one- and multi-step-ahead forecasting. To the best of our knowledge, this is the first time that the VAE is investigated to improve forecasting of patient arrivals time-series data. Data sets from the pediatric emergency department at Lille regional hospital center, France, are employed to evaluate the forecasting performance of the introduced method. The VAE model was evaluated and compared with seven methods namely Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM Network (ConvLSTM), restricted Boltzmann machine (RBM), Gated recurrent units (GRUs), and convolutional neural network (CNN). The results clearly show the promising performance of these deep learning models in forecasting ED visits and emphasize the better performance of the VAE in comparison to the other models.

5.
J Med Syst ; 38(9): 107, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053208

RESUMO

Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.


Assuntos
Aglomeração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Planejamento em Saúde/métodos , Necessidades e Demandas de Serviços de Saúde , Serviço Hospitalar de Emergência/organização & administração , França , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...