Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin HIV AIDS ; 19(3): 157-167, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547338

RESUMO

PURPOSE OF THE REVIEW: The quest for an HIV cure faces a formidable challenge: the persistent presence of latent viral infections within the cells and tissues of infected individuals. This review provides a thorough examination of discussions surrounding HIV latency, the use of humanized mouse models, and strategies aimed at eliminating the latent HIV reservoir. It explores the hurdles and advancements in understanding HIV pathogenesis, mainly focusing on establishing latent reservoirs in CD4 + T cells and macrophages. Introducing the concepts of functional and sterile cures, the review underscores the indispensable role of humanized mouse models in HIV research, offering crucial insights into the efficacy of cART and the ongoing pursuit of an HIV cure. RECENT FINDINGS: Here, we highlight studies investigating molecular mechanisms and pathogenesis related to HIV latency in humanized mice and discuss novel strategies for eradicating latent HIV. Emphasizing the importance of analytical cART interruption in humanized mouse studies to gauge its impact on the latent reservoir accurately, the review underlines the ongoing progress and challenges in harnessing humanized mouse models for HIV research. SUMMARY: This review suggests that humanized mice models provide valuable insights into HIV latency and potential eradication strategies, contributing significantly to the quest for an HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , Infecções por HIV/tratamento farmacológico , Latência Viral/fisiologia , HIV-1/genética , Linfócitos T CD4-Positivos , Modelos Animais de Doenças
2.
J Virol ; 96(21): e0082722, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36250708

RESUMO

The lack of a human immunodeficiency virus (HIV) cure has heightened interest in immunotherapy. As such, type I interferons (IFNs), in particular, IFN alpha (IFN-α), have gained renewed attention. However, HIV pathogenesis is driven by sustained IFN-mediated immune activation, and the use of IFNs is rather controversial. The following questions therein remain: (i) which IFN-α subtype to use, (ii) at which regimen, and (iii) at what time point in HIV infection it might be beneficial. Here, we used IFN-α14 modified by PASylation for its long half-life in vivo to eventually treat HIV infection. We defined the IFN dosing regimen based on the maximum increase in interferon-stimulated gene (ISG) expression 6 h after its administration and a return to baseline of ubiquitin-specific protease 18 (USP18) prior to the next dose. Notably, USP18 is the major negative regulator of type I IFN signaling. HIV infection resulted in increased ISG expression levels in humanized mice. Intriguingly, high baseline ISG levels correlated with lower HIV load. No effect was observed on HIV replication when PASylated IFN-α14 was administered in the chronic phase. However, combined antiretroviral therapy (cART) restored responsiveness to IFN, and PASylated IFN-α14 administered during analytical cART interruption resulted in a transiently lower HIV burden than in the mock-treated mice. In conclusion, cART-mediated HIV suppression restored transient IFN responsiveness and provided a potential window for immunoenhancing therapies in the context of analytical cART interruption. IMPORTANCE cART is highly efficient in suppressing HIV replication in HIV-infected patients and has resulted in a dramatic reduction in morbidity and mortality in HIV-infected people, yet it does not cure HIV infection. In addition, cART has several disadvantages. Thus, the HIV research community is exploring novel ways to control HIV infection for longer periods without cART. Here, we explored novel, long-acting IFN-α14 for its efficacy to control HIV replication in HIV-infected humanized mice. We found that IFN-α14 had no effect on chronic HIV infection. However, when mice were treated first with cART, we observed a transiently restored responsiveness to INF and a transiently lower HIV burden after stopping cART. These data emphasize (i) the value of cART-mediated HIV suppression and immune reconstitution in creating a window of opportunity for exploring novel immunotherapies, (ii) the potential of IFNs for constraining HIV, and (iii) the value of humanized mice for exploring novel immunotherapies.


Assuntos
Infecções por HIV , Interferon Tipo I , Humanos , Camundongos , Animais , Replicação Viral , Interferon-alfa , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferon Tipo I/metabolismo , Ubiquitina Tiolesterase
3.
mSphere ; 6(2)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853875

RESUMO

The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM.IMPORTANCE Despite the availability of efficient vaccines, morbilliviruses (e.g., canine distemper virus [CDV] and measles virus [MeV]) still cause major health impairments. Although antivirals may support vaccination campaigns, approved inhibitors are to date still lacking. Targeting late stages of the viral life cycle (i.e., the cell exit system) represents a viable option to potentially counteract morbilliviral infections. The matrix (M) protein of morbillivirus is a major contributor to membrane budding activity and is assumed to assemble into dimers that further associate to form higher oligomers. Here, we rationally engineered M protein variants with modifications in two microdomains that potentially locate at dimer-dimer interfaces. Our results spotlight the cornerstone impact of both microdomains in membrane budding activity and further suggest a role of finely tuned high-order oligomer formation in regulating late stages of cell exit. Collectively, our findings highlight two microdomains in the morbilliviral M protein as novel attractive targets for drug design.


Assuntos
Vírus da Cinomose Canina/química , Vírus da Cinomose Canina/genética , Microdomínios da Membrana/metabolismo , Proteínas Virais/química , Vírus da Cinomose Canina/metabolismo , Glicoproteínas/genética , Células HEK293 , Humanos , Microdomínios da Membrana/química , Conformação Proteica , Conformação Proteica em alfa-Hélice
4.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028721

RESUMO

The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity.IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.


Assuntos
Membrana Celular/virologia , Vírus da Cinomose Canina/fisiologia , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Citosol/virologia , Cães , Células HEK293 , Humanos , Lisina/genética , Lisina/metabolismo , Células Madin Darby de Rim Canino , Mutação , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...