Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14078, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890502

RESUMO

Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.


Assuntos
Composição de Bases , Genoma de Cloroplastos , Ipomoea , Filogenia , Ipomoea/genética , Ipomoea/classificação , Repetições de Microssatélites/genética , Análise de Sequência de DNA/métodos , Evolução Molecular , Uso do Códon
2.
Biology (Basel) ; 13(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927282

RESUMO

Cratoxylum formosum ssp. formosum (Cff), C. formosum ssp. pruniflorum (Cfp), and C. sumatranum (Cs) were investigated for phytochemical analysis. Toxicity testing, programmed cell death, and cell cycle arrest were tested on CHL-1, HCT-116, and HepG2 cancer cell lines, and human normal PBMCs. The results are revealed in the following order. The phytochemical percentages varied in each species, the quantity and concentration of α-amyrin and resveratrol were 0.038 mg/g and 0.955 mg/mL, and 0.064 mg/g and 0.640 mg/mL. The most studied Cratoxylum extracts showed IC50 values in PBMCs and cancer cell lines except for the hexane Cff and ethanol Cfp extracts. All studied extracts did not induce DNA breaks in PBMCs but caused significant DNA breaks in the cancer cell lines. All studied extracts induced both apoptosis and necrosis in cancer cell lines, and the DNA quantity in the S and G2-M phases decreased significantly but did not induce apoptosis and necrosis in PBMCs. Except for the ethanolic extracts of Cff and Cfp that induced PBMCs apoptosis and necrosis, these data confirmed that the three studied Cratoxylum samples have inhibiting properties for the growth of cancer cells and low toxicity to PBMCs. Cs showed more toxicity to cancer cell lines than Cf and cisplatin.

3.
Sci Rep ; 12(1): 18810, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335203

RESUMO

To expand the genomic information of Hypericaceae, particularly on Cratoxylum, we characterized seven novel complete plastid genomes (plastomes) of five Cratoxylum and two of its allied taxa, including C. arborescens, C. formosum subsp. formosum, C. formosum subsp. pruniflorum, C. maingayi, C. sumatranum, Hypericum hookerianum, and Triadenum breviflorum. For Cratoxylum, the plastomes ranged from 156,962 to 157,792 bp in length. Genomic structure and gene contents were observed in the five plastomes, and were comprised of 128-129 genes, which includes 83-84 protein-coding (CDS), 37 tRNA, and eight rRNA genes. The plastomes of H. hookerianum and T. breviflorum were 138,260 bp and 167,693 bp, respectively. A total of 110 and 127 genes included 72 and 82 CDS, 34 and 37 tRNA, as well as four and eight rRNA genes. The reconstruction of the phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) trees based on the concatenated CDS and internal transcribed spacer (ITS) sequences that were analyzed separately have revealed the same topology structure at genus level; Cratoxylum is monophyletic. However, C. formosum subsp. pruniflorum was not clustered together with its origin, raising doubt that it should be treated as a distinct species, C. pruniflorum based on molecular evidence that was supported by morphological descriptions.


Assuntos
Clusiaceae , Genomas de Plastídeos , Hypericum , Filogenia , Teorema de Bayes
4.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292590

RESUMO

In order to authenticate the genomic information of Barleriacristata L., B. lupulina Lindl., B. repens Nees, B. siamensis Craib, and B. strigosa Willd, cp genomes were investigated. They revealed a general structure with a total size of 151,997-152,324 bp. The genomes encoded a total of 131 genes, including 86 CDS, 37 tRNA, and 8 rRNA genes. Other details found were as follows: different numbers and types of SSRs; identical gene content, which is adjacent to the border regions, except for B. strigosa, that revealed a shorter ndhF gene sequence and lacked the ycf1 gene; slightly different genetic distance values, which can be used for species identification; three distinct gaps of nucleotide variations between the species located at the intergenic spacer regions of the LSC and CDS of the SSC; three effective molecular markers derived from divergent hotspot regions, including the ccsA-ndhD, ndhA-ndhH-rps15, and ycf1. The genetic relationships derived from the cp genome and the CDS phylogenetic trees of Barleria and the 13 genera in Acanthaceae and different families, Scrophulariaceae and Phrymaceae, showed similar results. The six Barleria species as monophyletic groups with inner and outer outgroups were found to have perfect discrimination. These results have helped to authenticate the five Barleria species and the six genera in Acanthaceae.


Assuntos
Acanthaceae , Genoma de Cloroplastos , Humanos , Filogenia , Repetições de Microssatélites , Acanthaceae/genética , DNA Intergênico , RNA de Transferência/genética , Nucleotídeos
5.
Plants (Basel) ; 11(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956463

RESUMO

α-EG is a unique substance that was first found in the leaves and fruits of Morinda citrifolia (Mc) growing in Thailand using GC-MS at 52.33% and 54.12%. It was then concentrated and its abundance quantified, along with that of pinoresinol, via GC, compared to the standards in leaves, ufp, rfp, rawfs, and seeds. α-EG and pinoresinol, which have collagen stimulating, skin whitening, and an inhibitory effect on wrinkle formation, were found in different concentrations and amounts. Three different concentrations of the five Mc part extracts were tested on NHDF for gene expression related to the aforementioned activities, COL1A1, COL1A2, and COL3A1, FGF1 and FGF7 by qRT-PCR. The results showed various expression levels, both stimulatory and inhibitory, with different concentrations of plant parts and genes. Similar results were revealed when the experiments were performed with Morus alba (Ma), which was found to contain 20.48 g protein p/100 g leaves at concentrations of 3.11 mg/mL. The studied Mc parts seem to have advantages based on the stated objectives, gene type and level of activity of each plant part. Rawfs and leaves supplemented with Ma samples were selected for toxicity tests with PBMCs. The lack of both cell and DNA toxicity from the rawfs indicated that they can be used safely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA