Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145766

RESUMO

A high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet-Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet-Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.

2.
BMC Plant Biol ; 22(1): 373, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896978

RESUMO

BACKGROUND: Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS: Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS: The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.


Assuntos
Rosa , Ácido Salicílico , Antioxidantes/metabolismo , Rosa/metabolismo , Ácido Salicílico/farmacologia , Salinidade , Estresse Salino , Cloreto de Sódio/farmacologia , Superóxido Dismutase/metabolismo
3.
Sci Rep ; 12(1): 9375, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672390

RESUMO

Lilium ledebourii (Baker) Boiss is a rare species, which exhibits valuable traits. However, before its genetic diversity and evolutionary were uncovered, its wild resources were jeopardized. Moreover, some ambiguities in phylogenetic relationships of this genus remain unresolved. Therefore, obtaining the whole chloroplast sequences of L. ledebourii and its comparative analysis along with other Lilium species is crucial and pivotal to understanding the evolution of this genus as well as the genetic populations. A multi-scale genome-level analysis, especially selection pressure, was conducted. Detailed third­generation sequencing and analysis revealed a whole chloroplast genome of 151,884 bp, with an ordinary quadripartite and protected structure comprising 37.0% GC. Overall, 113 different genes were recognized in the chloroplast genome, consisting of 30 distinct tRNA genes, four distinct ribosomal RNAs genes, and 79 unique protein-encoding genes. Here, 3234 SSRs and 2053 complex repeats were identified, and a comprehensive analysis was performed for IR expansion and contraction, and codon usage bias. Moreover, genome-wide sliding window analysis revealed the variability of rpl32-trnL-ccsA, petD-rpoA, ycf1, psbI-trnS-trnG, rps15-ycf1, trnR, trnT-trnL, and trnP-psaJ-rpl33 were higher among the 48 Lilium cp genomes, displaying higher variability of nucleotide in SC regions. Following 1128 pairwise comparisons, ndhB, psbJ, psbZ, and ycf2 exhibit zero synonymous substitution, revealing divergence or genetic restriction. Furthermore, out of 78 protein-coding genes, we found that accD and rpl36 under positive selection: however, at the entire-chloroplast protein scale, the Lilium species have gone through a purifying selection. Also, a new phylogenetic tree for Lilium was rebuilt, and we believe that the Lilium classification is clearer than before. The genetic resources provided here will aid future studies in species identification, population genetics, and Lilium conservation.


Assuntos
Genoma de Cloroplastos , Lilium , Cloroplastos/genética , Uso do Códon , Evolução Molecular , Lilium/genética , Filogenia
4.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440766

RESUMO

Saffron is a valuable plant and one of the most expensive spices worldwide. Nowadays, there is a tendency to produce this crop in indoor plant production systems. However, the production of saffron is restricted by the need for the reproduction of high-quality corms. In this study, we investigated the effect of different ratios of red (R) and blue (B) light spectra (including 100% B (monochromatic B), 75%, 50%, 40%, 25% B, and 0% B (monochromatic R) on the photosynthetic performance and biomass partitioning as well as morphological and biochemical characteristics of saffron. The growth of flower, root, and corm was improved by increasing the proportion of B to R light. B-grown plants were characterized by the highest photosynthetic functionality with efficient electron transport and lower energy dissipation when compared to R-grown plants. B light directed biomass toward the corms and floral organs, while R light directed it toward the leaves. In saffron, the weight of a daughter corm is of great importance since it determines the yield of the next year. As the ratio of B to R light increased, the daughter corms also became heavier, at the cost of reducing their number, though increasing the proportion of B-enhanced antioxidant capacity as well as the activity of ascorbate peroxidase and catalase while superoxide dismutase activity was enhanced in R-grown plants. In conclusion, B light increased the production of high-quality daughter corms and altered biomass partitioning towards harvestable organs (corms and flowers) in saffron plants.


Assuntos
Crocus/efeitos da radiação , Produtos Agrícolas/efeitos da radiação , Flores/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Antioxidantes/metabolismo , Biomassa , Metabolismo dos Carboidratos/efeitos da radiação , Carotenoides/metabolismo , Clorofila/metabolismo , Crocus/crescimento & desenvolvimento , Crocus/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Enzimas/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo
5.
Heliyon ; 6(1): e03247, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993522

RESUMO

The environmental toxicity of heavy metals in particular cadmium is a public concern. Cadmium is toxic for all living organisms including plants; however, plant species may show different tolerance to the presence of cadmium in their root medium. Adopting practical strategies may reduce cadmium bioavailability or increase the plant tolerance. In the present study, interaction of nitrate was investigated on cadmium treatment in hackberry (Celtis australis L.) seedlings. Different levels of nitrate (0, 50 and 100 mg/L) and cadmium (0 and 5 mg/L) were applied to seedlings via irrigation water during two consequence years. The treatments were arranged in a factorial with completely randomized design in four replications. The results of ANOVA showed that the cadmium-nitrate interaction was significant on leaf Cd concentration and root dry weight at P = 0.01, and on carotenoids and leaf dry weight at P = 0.05, while it was not significant on the rest of traits. Application of cadmium had no significant effect on new shoot growth, leaf chlorophyll and leaf fresh weight; however, it significantly reduced stomatal water conductance and photosynthesis rate, while it increased leaf transpiration rate, root and stem fresh weights, leaf Cd and proline concentrations. Application of nitrate levels, on the other hand, constantly increased the leaf nitrate concentration, new shoot growth, leaf fresh and dry weights, root fresh weight, stomatal water conductance and photosynthesis rate, whereas it reduced the necrotic points of leaves. The results indicated that the growth characteristics of hackberry seedlings were mainly influenced by nitrate but not cadmium application, and this ornamental tree is a tolerant species to high soil Cd levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...