Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2084: 145-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31729659

RESUMO

Cell permeability is an important factor in determining the bioavailability of therapeutics that is usually measured by cell culture testing. The concentration of pharmaceutical in a medium such as Hank's Balanced Salt Solution with HEPES organic buffer (HBSS-HEPES) is measured at a series of time points, making simplicity and high throughput of the analytical method important characteristics. We report an electrospray differential mobility spectrometry mass spectrometry method (nanoESI-DMS-MS) for the rapid determination of cyclosporin A (CsA, cyclosporine) concentration in such a buffer. DMS technology provides gas phase atmospheric pressure ion filtration for small-molecule bioanalytical methods that suppresses interfering ions and reduces chemical noise, without the use of chromatography. This allows simplified sample preparation, fast calibration curve development, and shortened analysis times. It has also been noted that the DMS prefilter can reduce contamination of the mass spectrometer by salts, thereby extending mass spectrometer system uptime.In the application described here, DMS-MS/MS is applied to cyclosporine A (CsA) in cell medium. Sample preparation is limited to dilution with an ammonium acetate-methanol-water mobile phase and the addition of CsA-d4 internal standard. The isotope ratio data are obtained in DMS-MS MRM mode observing NH3 loss from the ammonium adduct of the two species. A calibration curve with high linearity (R2 = 0.998) is rapidly obtained with nearly zero intercept, while it was found that a liquid chromatography LC-MS method required a preliminary SPE step to obtain a linear calibration curve. The time for data acquisition in the DMS-MS MRM method with flow injection (FIA) or infusion introduction at ESI flow of 400 nL/min is typically 30 s leading to a cycle time of less than 1 min.


Assuntos
Meios de Cultivo Condicionados/análise , Ciclosporina/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Análise de Dados , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Mobilidade Iônica/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas
2.
Anal Sci Adv ; 1(4): 233-244, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38716384

RESUMO

The separation and analysis of chiral compounds, especially enantiomers, presents a great challenge to modern analytical chemistry, particularly to mass spectrometry (MS). As a result, integrated orthogonal separations, such as chiral liquid chromatography (chiral LC), gas chromatography (GC), or capillary electrophoresis (CE), are often employed to separate enantiomers prior to MS analysis. Here, we combine chemical derivatization with differential mobility spectrometry (DMS) and MS to separate and quantitate the transformed enantiomeric pairs R- and S-amphetamine, as well as R- and S-methamphetamine. We also demonstrate separation of these drugs by using reverse-phase LC. However, while the LC method requires ∼5 min to provide separation, we have developed a flow-injection analysis (FIA) method using DMS as the exclusive mode of separation (FIA-DMS), requiring only ∼1.5 min with equivalent quantitative metrics (1-1000 ng/mL range) to the LC method. The DMS-based separation of each diastereomeric pair is driven by differences in binding energies between the analyte ions and the chemical modifier molecules (acetonitrile) added to the DMS environment.

3.
J Am Soc Mass Spectrom ; 25(7): 1098-113, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24452298

RESUMO

A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 10(6) normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.


Assuntos
Adutos de DNA/química , Gases/química , Espectrometria de Massas em Tandem/métodos , Compostos de Aminobifenil/química , Animais , Bovinos , DNA/química , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Imidazóis/química , Íons/química , Cinética
4.
J Am Soc Mass Spectrom ; 24(9): 1428-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797861

RESUMO

A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.


Assuntos
Espectrometria de Massas em Tandem/instrumentação , Cocaína/análogos & derivados , Cocaína/urina , Desenho de Equipamento , Humanos , Íons/química
5.
Rapid Commun Mass Spectrom ; 27(13): 1473-80, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722681

RESUMO

RATIONALE: There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. METHODS: A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. RESULTS: A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. CONCLUSIONS: The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl.


Assuntos
Adutos de DNA/química , Desoxiguanosina/química , Espectrometria de Massas em Tandem/métodos , Mutagênicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...