Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(2): 220810, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756057

RESUMO

Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.

2.
ISME Commun ; 1(1): 57, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37938636

RESUMO

We designed two probiotic treatments to control chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) on infected Panamanian golden frogs (Atelopus zeteki), a species that is thought to be extinct in the wild due to Bd. The first approach disrupted the existing skin microbe community with antibiotics then exposed the frogs to a core golden frog skin microbe (Diaphorobacter sp.) that we genetically modified to produce high titers of violacein, a known antifungal compound. One day following probiotic treatment, the engineered Diaphorobacter and the violacein-producing pathway could be detected on the frogs but the treatment failed to improve frog survival when exposed to Bd. The second approach exposed frogs to the genetically modified bacterium mixed into a consortium with six other known anti-Bd bacteria isolated from captive A. zeteki, with no preliminary antibiotic treatment. The consortium treatment increased the frequency and abundance of three probiotic isolates (Janthinobacterium, Chryseobacterium, and Stenotrophomonas) and these persisted on the skin 4 weeks after probiotic treatment. There was a temporary increase in the frequency and abundance of three other probiotics isolates (Masillia, Serratia, and Pseudomonas) and the engineered Diaphorobacter isolate, but they subsequently disappeared from the skin. This treatment also failed to reduce frog mortality upon exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...