Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30956384

RESUMO

In vivo imaging experiments often require automated detection and tracking of changes in the specimen. These tasks can be hindered by variations in the position and orientation of the specimen relative to the microscope, as well as by linear and nonlinear tissue deformations. We propose a feature-based registration method, coupled with optimal transformations, designed to address these problems in 3D time-lapse microscopy images. Features are detected as local regions of maximum intensity in source and target image stacks, and their bipartite intensity dissimilarity matrix is used as an input to the Hungarian algorithm to establish initial correspondences. A random sampling refinement method is employed to eliminate outliers, and the resulting set of corresponding features is used to determine an optimal translation, rigid, affine, or B-spline transformation for the registration of the source and target images. Accuracy of the proposed algorithm was tested on fluorescently labeled axons imaged over a 68-day period with a two-photon laser scanning microscope. To that end, multiple axons in individual stacks of images were traced semi-manually and optimized in 3D, and the distances between the corresponding traces were measured before and after the registration. The results show that there is a progressive improvement in the registration accuracy with increasing complexity of the transformations. In particular, sub-micrometer accuracy (2-3 voxels) was achieved with the regularized affine and B-spline transformations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30971853

RESUMO

The ability to extract accurate morphology of labeled neurons from microscopy images is crucial for mapping brain connectivity and for understanding changes in connectivity that underlie learning and neurological disorders. There are, however, two problems, specific to optical microscopy imaging of neurons, which make accurate neuron tracing exceedingly challenging: (i) neurites can appear broken due to inhomogeneous labeling and (ii) neurites can appear fused in 3D due to limited resolution. Here, we propose and evaluate several artificial neural network (ANN) architectures and conventional image enhancement filters with the aim of alleviating both problems. We developed four image quality metrics to evaluate the effects of the proposed filters: normalized intensity in the cross-over regions between neurites, effective radius of neurites, coefficient of variation of intensity along neurites, and local background to neurite intensity ratio. Our results show that ANN-based filters, trained on optimized semi-manual traces of neurites, can significantly outperform conventional filters. In particular, U-Net based filtering can virtually eliminate background intensity, while also reducing the effective radius of neurites to nearly 1 voxel. In addition, this filter significantly decreases intensity in the cross-over regions between neurites and reduces fluctuations of intensity on neurites' centerlines. These results suggest that including an ANN-based filtering step, which does not require substantial extra time or computing power, can be beneficial for automated neuron tracing projects.

3.
PLoS One ; 13(7): e0200676, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024921

RESUMO

Image registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Imagens de Satélites/métodos , Gráficos por Computador , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...