Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 5(1): 47-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904045

RESUMO

Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Oligonucleotídeos , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Ácidos Graxos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34798938

RESUMO

The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.


Assuntos
Exposição Ocupacional , Telômero , Soldagem , Humanos , Chumbo/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Material Particulado , Telômero/genética , Xenobióticos
4.
Front Cell Dev Biol ; 8: 493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612998

RESUMO

Telomeres are repetitive regions of DNA bound by specialized proteins at the termini of linear chromosomes that prevent the natural chromosome ends from being recognized as DNA double strand breaks. Telomeric DNA is gradually eroded with each round of cell division, resulting in the accumulation of critically short or dysfunctional telomeres that eventually trigger cellular senescence. Consequently, telomere length is indicative of the proliferative capacity of a cell. Multiple methods exist to measure telomere length and telomere content, but a simple and reliable technique to accurately measure individual telomere lengths is currently lacking. We have developed the Telomere length Combing Assay (TCA) to measure telomere length on stretched DNA fibers. We used TCA to measure telomere erosion in primary human fibroblasts, and to detect telomere lengthening in response to activation of telomere maintenance pathways. TCA was also used to accurately measure telomere length in healthy individuals, and to identify critically short telomeres in patients with telomere biology disorders. TCA is performed on isolated DNA, negating the need for cycling cells. TCA is amenable to semi-automated image analysis, and can be fully automated using the Genomic Vision molecular combing platform. This not only precludes sampling bias, but also provides the potential for high-throughput applications and clinical development. TCA is a simple and versatile technique to measure the distribution of individual telomere lengths in a cell population, offering improved accuracy, and more detailed biological insight for telomere length measurement applications.

5.
Nat Commun ; 11(1): 435, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974348

RESUMO

Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Neoplasias/genética , Desempenho Físico Funcional , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
6.
Oxid Med Cell Longev ; 2018: 7017423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967663

RESUMO

Pesticides used at tobacco fields are associated with genomic instability, which is proposed to be sensitive to nutritional intake and may also induce epigenetic changes. We evaluated the effect of dietary intake and genetic susceptibility polymorphisms in MTHFR (rs1801133) and TERT (rs2736100) genes on genomic and epigenetic instability in tobacco farmers. Farmers, when compared to a nonexposed group, showed increased levels of different parameters of DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds), evaluated by cytokinesis-block micronucleus cytome assay. Telomere length (TL) measured by quantitative PCR was shorter in exposed individuals. Global DNA methylation was significantly decreased in tobacco farmers. The exposed group had lower dietary intake of fiber, but an increase in cholesterol; vitamins such as B6, B12, and C; ß-carotene; and α-retinol. Several trace and ultratrace elements were found higher in farmers than in nonfarmers. The MTHFR CT/TT genotype influenced nucleoplasmic bridges, nuclear buds, and TL in the exposed group, whereas TERT GT/TT only affected micronucleus frequency. We observed a positive correlation of TL and lipids and an inverse correlation of TL and fibers. The present data suggest an important role of dietary intake and subjects' genetic susceptibility to xenobiotics-induced damages and epigenetic alterations in tobacco farmers occupationally exposed to mixtures of pesticides.


Assuntos
Dieta , Predisposição Genética para Doença/genética , Instabilidade Genômica/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Praguicidas/efeitos adversos , Adulto , Brasil , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Fazendeiros , Feminino , Instabilidade Genômica/genética , Genótipo , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Telomerase/genética , Encurtamento do Telômero/efeitos dos fármacos , Nicotiana
7.
Ecotoxicol Environ Saf ; 159: 164-171, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29747151

RESUMO

Tobacco farming has been proving to induce poor health outcomes in agricultural workers, genomic instability being the triggering one. This study evaluated influence of PON1 (paraoxonase 1), SOD2 (superoxide dismutase), OGG1 (8-oxoguanine glycosylase), XRCC1 (X-ray repair cross-complementing protein 1), and XRCC4 (X-ray repair cross-complementing protein 4) genes polymorphisms on DNA damage in 121 subjects occupationally exposed to pesticides mixtures and nicotine at tobacco fields and 121 non-exposed individuals. Inorganic elements (Cl, P, S and Zn) and cotinine levels were found increased in farmers, confirming exposure. Results show higher frequencies of buccal micronucleus (MN), nuclear buds (NBUD), binucleated cells (BN) and damage index (comet assay), reduced telomere length (TL), and increased parameters of oxidative stress in farmers compared to non-exposed individuals. PON1 Gln/Gln genotype was associated with increased MN frequency. SOD2 Val/Val showed association with increased frequency of MN and NBUD and decreased antioxidant activity. The XRCC1 Arg/Arg showed protective effect for MN, BN and TL, which was also positively influenced by OGG1 -/Cys. MN was decreased in XRCC4 -/Ile farmers. These genotypes also showed a risk for antioxidant activity. Our study proposes that PON1 and SOD2 variants play a role in xenobiotic-metabolizing system in farmers, while base excision repair (BER) pathway could be the repair mechanism involved in genomic instability suffered by tobacco farmers.


Assuntos
Arildialquilfosfatase/genética , Dano ao DNA , DNA Glicosilases/genética , Proteínas de Ligação a DNA/genética , Praguicidas/toxicidade , Superóxido Dismutase/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Adulto , Ensaio Cometa , Fazendeiros , Feminino , Genótipo , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Polimorfismo Genético , Nicotiana
8.
Mutagenesis ; 33(2): 119-128, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29669110

RESUMO

Tobacco farming is an important economic income in Brazil, although it has been challenged as regard the occupational exposure to both pesticides and nicotine endured by farmers. Chronic occupational exposure to complex mixtures can lead to health hazardous. We examined genomic instability and epigenetic changes in tobacco farmers occupationally exposed to pesticide mixtures and nicotine at tobacco fields. DNA damage was assessed by alkaline comet assay in blood cells. Genomic DNA was isolated, and telomere length was measured using quantitative polymerase chain reaction assay. We measured 5-methyl-2'-deoxycytidine, a marker of global DNA methylation, and p16 promoter methylation. The oxidative profile was evaluated by trolox equivalent antioxidant capacity and lipid peroxidation (thiobarbituric acid reactive substances) in serum. Exposure parameters, plasma cotinine and inorganic element levels, were also measured. DNA damage was significantly elevated for farmers in relation to unexposed group (P < 0.001; Mann-Whitney test) and positively associated with years of exposure. Inverse relationship between DNA damage and total equivalent antioxidant activity was demonstrated for exposed and unexposed groups. Exposed group showed significantly shorter telomeres (P < 0.001; unpaired t-test) and DNA hypomethylation (P < 0.001; unpaired t-test), as well as p16 hypermethylation (P = 0.003; Mann-Whitney test). Lipid peroxidation was increased for exposed group in relation to unexposed one (P = 0.02; Mann-Whitney test) and presented a positive correlation with global DNA methylation (P = 0.0264). Farmers have increased plasma cotinine levels (P < 0.001) and inorganic elements (phosphorus, sulphur and chlorine) in relation to unexposed group. Elevated oxidative stress levels due to chronic occupational pesticide mixtures and nicotine exposure in tobacco farmers were associated with higher DNA damage, shorter telomeres and altered DNA methylation. Telomere-accelerated attrition due to exposure may be potential intermediate step before a disease state.


Assuntos
Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Adulto , Idoso , Brasil , Ensaio Cometa , Metilação de DNA/genética , Fazendeiros , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/toxicidade , Telômero/efeitos dos fármacos , Telômero/genética , Encurtamento do Telômero/genética , Nicotiana/toxicidade
9.
Int J Occup Environ Health ; 23(4): 311-318, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052162

RESUMO

BACKGROUND: Genetic damage may occur spontaneously under normal metabolic circumstances, inadequate intake of nutrients, and excessive exposure to environmental mutagens. OBJECTIVES: To evaluate the influence of the intake of micronutrients vitamin B12, vitamin B6, and folate and of the polymorphism methylenetetrahydrofolate reductase (MTHFR) C677T on the induction of DNA damage in tobacco farmers. METHODS: The study involved 66 men and 44 women engaged in tobacco cultivation in the region of Venâncio Aires (Rio Grande do Sul state, Brazil). Peripheral blood samples were collected to analyze DNA damage using the Comet assay, the micronucleus (MN) test and MTHFR C677T polymorphism. Dietary intake was evaluated based on the mean values obtained from three 24-h diet recall questionnaires, and nutrient intake data were computerized and estimated in the Food Processor SQL 10.9 program. The statistical tests used to generate the stated results were Kruskal-Wallis test, Exact Fisher's test, and multivariate linear regression analysis. RESULTS: DNA damage was significantly higher in individuals who had an inadequate intake of folate, vitamin B12, and vitamin B6 (P < 0.01) assessed by Comet assay. In relation to MN test results, buccal cells showed MN frequency higher in individuals with inadequate intake of vitamin B6 (P < 0.01). No difference was observed in MN lymphocytes frequency. No significant association was detected between MTHFR C677T polymorphism and DNA damage in tobacco farmers. CONCLUSION: Our results suggest that folate, vitamin B12, and vitamin B6 deficiency may be associated with genotoxic effect in individuals exposed to pesticides.


Assuntos
Dano ao DNA , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Micronutrientes/metabolismo , Exposição Ocupacional , Polimorfismo Genético , Complexo Vitamínico B/metabolismo , Adulto , Brasil , Fazendeiros/estatística & dados numéricos , Feminino , Ácido Fólico/metabolismo , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pessoa de Meia-Idade , Praguicidas/análise , Nicotiana , Vitamina B 12/metabolismo , Vitamina B 6/metabolismo
10.
Mutat Res ; 744(2): 140-4, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331007

RESUMO

Nicotine has been reported to cause acute toxicity and to present long-term risks, such as chromosomal damage and genetic instability. The genotoxicity of nicotine may be mediated partly by an oxidative mechanism. We have evaluated the effects of the antioxidant vitamin C on nicotine-induced genotoxicity in mice. The comet assay and the micronucleus test were used to assess the effects of nicotine (15mg/kg) at different exposure times (2, 4, and 24h in the comet assay; 24h in the micronucleus test). Pretreatment with vitamin C 24h before nicotine exposure strongly protected mice against nicotine-induced DNA damage.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Nicotina/toxicidade , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Testes para Micronúcleos , Nicotina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...