Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14534, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008461

RESUMO

To date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread occurred in multiple pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here we report a sequence and structural-bioinformatics analysis to estimate the effects of amino acid substitutions on the affinity of the SARS-CoV-2 spike receptor binding domain (RBD) to the human receptor hACE2. This is done through qualitative electrostatics and hydrophobicity analysis as well as molecular dynamics simulations used to develop a high-precision empirical scoring function (ESF) closely related to the linear interaction energy method and calibrated on a large set of experimental binding energies. For the latest variant of concern (VOC), B.1.1.529 Omicron, our Halo difference point cloud studies reveal the largest impact on the RBD binding interface compared to all other VOC. Moreover, according to our ESF model, Omicron achieves a much higher ACE2 binding affinity than the wild type and, in particular, the highest among all VOCs except Alpha and thus requires special attention and monitoring.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , COVID-19 , Biologia Computacional , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Chem Phys ; 153(18): 185102, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187403

RESUMO

Molecular dynamics simulations are an invaluable tool to characterize the dynamic motions of proteins in atomistic detail. However, the accuracy of models derived from simulations inevitably relies on the quality of the underlying force field. Here, we present an evaluation of current non-polarizable and polarizable force fields (AMBER ff14SB, CHARMM 36m, GROMOS 54A7, and Drude 2013) based on the long-standing biophysical challenge of protein folding. We quantify the thermodynamics and kinetics of the ß-hairpin formation using Markov state models of the fast-folding mini-protein CLN025. Furthermore, we study the (partial) folding dynamics of two more complex systems, a villin headpiece variant and a WW domain. Surprisingly, the polarizable force field in our set, Drude 2013, consistently leads to destabilization of the native state, regardless of the secondary structure element present. All non-polarizable force fields, on the other hand, stably characterize the native state ensembles in most cases even when starting from a partially unfolded conformation. Focusing on CLN025, we find that the conformational space captured with AMBER ff14SB and CHARMM 36m is comparable, but the ensembles from CHARMM 36m simulations are clearly shifted toward disordered conformations. While the AMBER ff14SB ensemble overstabilizes the native fold, CHARMM 36m and GROMOS 54A7 ensembles both agree remarkably well with experimental state populations. In addition, GROMOS 54A7 also reproduces experimental folding times most accurately. Our results further indicate an over-stabilization of helical structures with AMBER ff14SB. Nevertheless, the presented investigations strongly imply that reliable (un)folding dynamics of small proteins can be captured in feasible computational time with current additive force fields.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Conformação Proteica
3.
Biophys J ; 119(3): 652-666, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697976

RESUMO

Biomolecular recognition between proteins follows complex mechanisms, the understanding of which can substantially advance drug discovery efforts. Here, we track each step of the binding process in atomistic detail with molecular dynamics simulations using trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI) as a model system. We use umbrella sampling to cover a range of unbinding pathways. Starting from these simulations, we subsequently seed classical simulations at different stages of the process and combine them to a Markov state model. We clearly identify three kinetically separated states (an unbound state, an encounter state, and the final complex) and describe the mechanisms that dominate the binding process. From our model, we propose the following sequence of events. The initial formation of the encounter complex is driven by long-range interactions because opposite charges in trypsin and BPTI draw them together. The encounter complex features the prealigned binding partners with binding sites still partially surrounded by solvation shells. Further approaching leads to desolvation and increases the importance of van der Waals interactions. The native binding pose is adopted by maximizing short-range interactions. Thereby side-chain rearrangements ensure optimal shape complementarity. In particular, BPTI's P1 residue adapts to the S1 pocket and prime site residues reorient to optimize interactions. After the paradigm of conformation selection, binding-competent conformations of BPTI and trypsin are already present in the apo ensembles and their probabilities increase during this proposed two-step association process. This detailed characterization of the molecular forces driving the binding process includes numerous aspects that have been discussed as central to the binding of trypsin and BPTI and protein complex formation in general. In this study, we combine all these aspects into one comprehensive model of protein recognition. We thereby contribute to enhance our general understanding of this fundamental mechanism, which is particularly critical as the development of biopharmaceuticals continuously gains significance.


Assuntos
Aprotinina , Animais , Aprotinina/metabolismo , Sítios de Ligação , Bovinos , Ligação Proteica , Conformação Proteica , Tripsina/metabolismo
4.
J Chem Inf Model ; 60(8): 3843-3853, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32639731

RESUMO

Reliable information on partition coefficients plays a key role in drug development, as solubility decisively affects bioavailability. In a physicochemical context, the partition coefficient of a solute between two different solvents can be described as a function of solvation free energies. Hence, substantial scientific efforts have been made toward accurate predictions of solvation free energies in various solvents. The grid inhomogeneous solvation theory (GIST) facilitates the calculation of solvation free energies. In this study, we introduce an extended version of the GIST algorithm, which enables the calculation for chloroform in addition to water. Furthermore, GIST allows localization of enthalpic and entropic contributions. We test our approach by calculating partition coefficients between water and chloroform for a set of eight small molecules. We report a Pearson correlation coefficient of 0.96 between experimentally determined and calculated partition coefficients. The capability to reliably predict partition coefficients between water and chloroform and the possibility to localize their contributions allow the optimization of a compound's partition coefficient. Therefore, we presume that this methodology will be of great benefit for the efficient development of pharmaceuticals.


Assuntos
Clorofórmio , Água , Solubilidade , Solventes , Termodinâmica
5.
J Chem Inf Model ; 60(7): 3508-3517, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32551643

RESUMO

The relation of surface polarity and conformational preferences is decisive for cell permeability and thus bioavailability of macrocyclic drugs. Here, we employ grid inhomogeneous solvation theory (GIST) to calculate solvation free energies for a series of six macrocycles in water and chloroform as a measure of passive membrane permeability. We perform accelerated molecular dynamics simulations to capture a diverse structural ensemble in water and chloroform, allowing for a direct profiling of solvent-dependent conformational preferences. Subsequent GIST calculations facilitate a quantitative measure of solvent preference in the form of a transfer free energy, calculated from the ensemble-averaged solvation free energies in water and chloroform. Hence, the proposed method considers how the conformational diversity of macrocycles in polar and apolar solvents translates into transfer free energies. Following this strategy, we find a striking correlation of 0.92 between experimentally determined cell permeabilities and calculated transfer free energies. For the studied model systems, we find that the transfer free energy exceeds the purely water-based solvation free energies as a reliable estimate of cell permeability and that conformational sampling is imperative for a physically meaningful model. We thus recommend this purely physics-based approach as a computational tool to assess cell permeabilities of macrocyclic drug candidates.


Assuntos
Clorofórmio , Água , Permeabilidade , Solventes , Termodinâmica
6.
J Chem Inf Model ; 60(6): 3030-3042, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32348143

RESUMO

Enzymatic function and activity of proteases is closely controlled by the pH value. The protonation states of titratable residues in the active site react to changes in the pH value, according to their pKa, and thereby determine the functionality of the enzyme. Knowledge of the titration behavior of these residues is crucial for the development of drugs targeting the active site residues. However, experimental pKa data are scarce, since the systems' size and complexity make determination of these pKa values inherently difficult. In this study, we use single pH constant pH MD simulations as a fast and robust tool to estimate the active site pKa values of a set of aspartic, cysteine, and serine proteases. We capture characteristic pKa shifts of the active site residues, which dictate the experimentally determined activity profiles of the respective protease family. We find clear differences of active site pKa values within the respective families, which closely match the experimentally determined pH preferences of the respective proteases. These shifts are caused by a distinct network of electrostatic interactions characteristic for each protease family. While we find convincing agreement with experimental data for serine and aspartic proteases, we observe clear deficiencies in the description of the titration behavior of cysteines within the constant pH MD framework and highlight opportunities for improvement. Consequently, with this work, we provide a concise set of active site pKa values of aspartic and serine proteases, which could serve as reference for future theoretical as well as experimental studies.


Assuntos
Cisteína , Serina Proteases , Domínio Catalítico , Humanos , Concentração de Íons de Hidrogênio , Eletricidade Estática
7.
Sci Rep ; 10(1): 1086, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974511

RESUMO

The equilibrium between active E and inactive E* forms of thrombin is assumed to be governed by the allosteric binding of a Na+ ion. Here we use molecular dynamics simulations and Markov state models to sample transitions between active and inactive states. With these calculations we are able to compare thermodynamic and kinetic properties depending on the presence of Na+. For the first time, we directly observe sodium-induced conformational changes in long-timescale computer simulations. Thereby, we are able to explain the resulting change in activity. We observe a stabilization of the active form in presence of Na+ and a shift towards the inactive form in Na+-free simulations. We identify key structural features to quantify and monitor this conformational shift. These include the accessibility of the S1 pocket and the reorientation of W215, of R221a and of the Na+ loop. The structural characteristics exhibit dynamics at various timescales: Conformational changes in the Na+ binding loop constitute the slowest observed movement. Depending on its orientation, it induces conformational shifts in the nearby substrate binding site. Only after this shift, residue W215 is able to move freely, allowing thrombin to adopt a binding-competent conformation.


Assuntos
Sódio/metabolismo , Trombina/metabolismo , Motivos de Aminoácidos , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Protrombina/química , Protrombina/metabolismo , Sódio/química , Trombina/química , Trombina/genética
8.
J Mol Recognit ; 31(10): e2727, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29785722

RESUMO

Serine proteases of the Chymotrypsin family are structurally very similar but have very different substrate preferences. This study investigates a set of 9 different proteases of this family comprising proteases that prefer substrates containing positively charged amino acids, negatively charged amino acids, and uncharged amino acids with varying degree of specificity. Here, we show that differences in electrostatic substrate preferences can be predicted reliably by electrostatic molecular interaction fields employing customized GRID probes. Thus, we are able to directly link protease structures to their electrostatic substrate preferences. Additionally, we present a new metric that measures similarities in substrate preferences focusing only on electrostatics. It efficiently compares these electrostatic substrate preferences between different proteases. This new metric can be interpreted as the electrostatic part of our previously developed substrate similarity metric. Consequently, we suggest, that substrate recognition in terms of electrostatics and shape complementarity are rather orthogonal aspects of substrate recognition. This is in line with a 2-step mechanism of protein-protein recognition suggested in the literature.


Assuntos
Serina Proteases/metabolismo , Sítios de Ligação , Ligação Proteica , Serina Proteases/química , Eletricidade Estática , Especificidade por Substrato
9.
J Biomol Struct Dyn ; 36(15): 4072-4084, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29210603

RESUMO

A ten microsecond molecular dynamics simulation of a kallikrein-related peptidase 7 peptide complex revealed an unexpected change in binding mode. After more than two microseconds unrestrained sampling we observe a spontaneous transition of the binding pose including a 180° rotation around the P1 residue. Subsequently, the substrate peptide occupies the prime side region rather than the cognate non-prime side in a stable conformation. We characterize the unexpected binding mode in terms of contacts, solvent-accessible surface area, molecular interactions and energetic properties. We compare the new pose to inhibitor-bound structures of kallikreins with occupied prime side and find that a similar orientation is adopted. Finally, we apply in silico mutagenesis based on the alternative peptide binding position to explore the prime side specificity of kallikrein-related peptidase 7 and compare it to available experimental data. Our study provides the first microsecond time scale simulation data on a kallikrein protease and shows previously unexplored prime side interactions. Therefore, we expect our study to advance the rational design of inhibitors targeting kallikrein-related peptidase 7, an emerging drug target involved in several skin diseases as well as cancer.


Assuntos
Clorometilcetonas de Aminoácidos/química , Calicreínas/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Inibidores de Proteases/química , Domínio Catalítico , Humanos , Calicreínas/antagonistas & inibidores , Cinética , Ligantes , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Termodinâmica
10.
Front Immunol ; 9: 3065, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666252

RESUMO

We present an approach to assess antibody CDR-H3 loops according to their dynamic properties using molecular dynamics simulations. We selected six antibodies in three pairs differing substantially in their individual promiscuity respectively specificity. For two pairs of antibodies crystal structures are available in different states of maturation and used as starting structures for the analyses. For a third pair we chose two antibody CDR sequences obtained from a synthetic library and predicted the respective structures. For all three pairs of antibodies we performed metadynamics simulations to overcome the limitations in conformational sampling imposed by high energy barriers. Additionally, we used classic molecular dynamics simulations to describe nano- to microsecond flexibility and to estimate up to millisecond kinetics of captured conformational transitions. The methodology represents the antibodies as conformational ensembles and allows comprehensive analysis of structural diversity, thermodynamics of conformations and kinetics of structural transitions. Referring to the concept of conformational selection we investigated the link between promiscuity and flexibility of the antibodies' binding interfaces. The obtained detailed characterization of the binding interface clearly indicates a link between structural flexibility and binding promiscuity for this set of antibodies.


Assuntos
Anticorpos/química , Afinidade de Anticorpos , Diversidade de Anticorpos , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/química , Sequência de Aminoácidos , Complexo Antígeno-Anticorpo , Cristalografia por Raios X , Epitopos/química , Ligação de Hidrogênio , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
11.
J Chem Theory Comput ; 12(8): 3449-55, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27322931

RESUMO

Here, we demonstrate a method to capture local dynamics on a time scale 3 orders of magnitude beyond state-of-the-art simulation approaches. We apply accelerated molecular dynamics simulations for conformational sampling and extract reweighted backbone dihedral distributions. Local dynamics are characterized by torsional probabilities, resulting in residue-wise dihedral entropies. Our approach is successfully validated for three different protein systems of increasing size: alanine dipeptide, bovine pancreatic trypsin inhibitor (BPTI), and the major birch pollen allergen Bet v 1a. We demonstrate excellent agreement of flexibility profiles with both large-scale computer simulations and NMR experiments. Thus, our method provides efficient access to local protein dynamics on extended time scales of high biological relevance.


Assuntos
Antígenos de Plantas/química , Aprotinina/química , Dipeptídeos/química , Simulação de Dinâmica Molecular , Alanina/química , Animais , Antígenos de Plantas/metabolismo , Aprotinina/metabolismo , Bovinos , Dipeptídeos/metabolismo , Entropia , Espectroscopia de Ressonância Magnética
12.
PLoS One ; 10(10): e0140713, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496636

RESUMO

Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm "dynamics govern specificity" might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.


Assuntos
Fibrinogênio/metabolismo , Trombina/metabolismo , Sítios de Ligação , Simulação por Computador , Entropia , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Especificidade por Substrato , Termodinâmica , Trombina/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...