Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Diabetes ; 69(9): 1903-1916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586980

RESUMO

Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hidroxibutiratos/sangue , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Biomarcadores/sangue , Composição Corporal/fisiologia , Diferenciação Celular , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Masculino , Obesidade/sangue
2.
Endocrinology ; 159(1): 323-340, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040448

RESUMO

It is unknown how the lack of insulin receptor (IR)/insulinlike growth factor I receptor (IGFIR) in a tissue-specific manner affects brown fat development and mitochondrial integrity and function, as well as its effect on the redistribution of the adipose organ and the metabolic status. To address this important issue, we developed IR/IGFIR double-knockout (DKO) in a brown adipose tissue-specific manner. Lack of those receptors caused severe brown fat atrophy, enhanced beige cell clusters in inguinal fat; loss of mitochondrial mass; mitochondrial damage related to cristae disruption; and the loss of proteins involved in autophagosome formation, mitophagy, mitochondrial quality control, and dynamics and thermogenesis. More important, DKO mice showed an impaired thermogenesis upon cold exposure, based on a failure in the mitochondrial fission mechanisms and a much lower uncoupling protein 1 transcription rate and content. As a result, DKO mice under normal conditions showed an obesity susceptibility, revealed by increased body fat mass and insulin resistance. Upon consumption of a high-fat diet, DKO mice displayed frank obesity, as shown by increased body weight, increased adiposity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia, all consistent with a metabolic syndrome. Collectively, our data suggest a cause-and-effect relationship between failure in brown fat thermogenesis and increased adiposity and obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Síndrome Metabólica/metabolismo , Dinâmica Mitocondrial , Obesidade/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Termogênese , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/patologia , Tecido Adiposo Bege/ultraestrutura , Tecido Adiposo Marrom/patologia , Tecido Adiposo Marrom/ultraestrutura , Adiposidade , Animais , Atrofia , Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/etiologia , Hipertrigliceridemia/etiologia , Resistência à Insulina , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Obesidade/etiologia , Obesidade/patologia , Obesidade/fisiopatologia , Especificidade de Órgãos , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Aumento de Peso
3.
Oncogene ; 36(35): 4987-4996, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28459466

RESUMO

The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterised by hyperinsulinaemia and insulin resistance. Because hyperinsulinaemia itself is an independent risk factor for cancer development, we examined tissue-specific insulin action in intestinal tumour formation. In vitro, insulin increased proliferation of intestinal tumour epithelial cells by almost two-fold in primary culture of tumour cells from ApcMin/+ mice. Surprisingly, targeted deletion of insulin receptors in intestinal epithelial cells in ApcMin/+ mice did not change intestinal tumour number or size distribution on either a low or high-fat diet. We therefore asked whether cells in the tumour stroma might explain the association between tumour formation and insulin resistance. To this end, we generated ApcMin/+ mice with loss of insulin receptors in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules and increased the frequency of neutrophils in tumours. We conclude that although insulin is mitogenic for intestinal tumour cells in vitro, impaired insulin action in the tumour microenvironment may be more important in conditions where hyperinsulinaemia is secondary to insulin resistance. Insulin resistance in tumour endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.


Assuntos
Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Células Endoteliais/metabolismo , Resistência à Insulina , Animais , Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/biossíntese
4.
Endocrinology ; 157(4): 1495-511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26910308

RESUMO

Brown fat is a thermogenic tissue that generates heat to maintain body temperature in cold environments and dissipate excess energy in response to overfeeding. We have addressed the role of the IGFIR in the brown fat development and function. Mice lacking IGFIR exhibited normal brown adipose tissue/body weight in knockout (KO) vs control mice. However, lack of IGFIR decreased uncoupling protein 1 expression in interscapular brown fat and beige cells in inguinal fat. More importantly, the lack of IGFIR resulted in an impaired cold acclimation. No differences in the total fat volume were found in the KO vs control mice. Epididymal fat showed larger adipocytes but with a lower number of adipocytes in KO vs control mice at age 12 months. In addition, KO mice showed a sustained moderate hyperinsulinemia and hypertriglyceridemia upon time and hepatic insulin insensitivity associated with lipid accumulation, with the outcome of a global insulin resistance. In addition, we found that the expression of uncoupling protein 3 in the skeletal muscle was decreased and its expression was increased in the heart in parallel with the expression of beta-2 adrenergic receptors. Upon nonobesogenic high-fat diet, we found a severe insulin resistance in the liver and in the skeletal muscle, but unchanged insulin sensitivity in the heart. In conclusion, our data suggest that IGFIR it is not an essential growth factor in the brown fat development in the presence of the IR and very high plasma levels of IGF-I, but it is indispensable for full brown fat functionality.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Resistência à Insulina , Receptor IGF Tipo 1/metabolismo , Termogênese , Aclimatação , Adipócitos/metabolismo , Animais , Western Blotting , Temperatura Baixa , Epididimo/metabolismo , Expressão Gênica , Homeostase , Hiperinsulinismo/genética , Hipertrigliceridemia/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos , Receptor IGF Tipo 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Obes Rev ; 15(9): 697-708, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25059108

RESUMO

Obesity is closely associated with cardiovascular diseases and type 2 diabetes, but some obese individuals, despite having excessive body fat, exhibit metabolic health that is comparable with that of lean individuals. The 'healthy obese' phenotype was described in the 1980s, but major advancements in its characterization were only made in the past five years. During this time, several new mechanisms that may be involved in health preservation in obesity were proposed through the use of transgenic animal models, use of sophisticated imaging techniques and in vivo measurements of insulin sensitivity. However, the main obstacle in advancing our understanding of the metabolically healthy obese phenotype and its related long-term health risks is the lack of a standardized definition. Here, we summarize the proceedings of the 13th Stock Conference of the International Association of the Study of Obesity. We describe the current research and highlight the unanswered questions and gaps in the field. Better understanding of metabolic health in obesity will assist in therapeutic decision-making and help identify therapeutic targets to improve metabolic health in obesity.


Assuntos
Glicemia/metabolismo , Doenças Cardiovasculares/fisiopatologia , Resistência à Insulina , Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Fenótipo , Índice de Massa Corporal , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Congressos como Assunto , Sistemas de Apoio a Decisões Clínicas , Interação Gene-Ambiente , Humanos , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Obesidade/sangue , Obesidade/epidemiologia , Padrões de Referência , Fatores de Risco
6.
Cell Death Differ ; 21(9): 1442-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24902901

RESUMO

The phosphatidylinositol 3-kinase (PI3K) regulatory subunits p55α and p50α are coordinately transcriptionally upregulated by signal transducer and activator of transcription 3 (Stat3) at the onset of mammary gland involution, a process that requires Stat3. Deletion of both p55α and p50α subunits in vivo abrogated mammary epithelial cell death during involution. This was associated also with reduced cytosolic levels and activity of the cysteine protease cathepsin L, which is implicated in lysosomal-mediated programmed cell death (LM-PCD) and is upregulated in involution. Furthermore, involution is delayed in cathepsin L-deficient mice suggesting that the p55α/p50α subunits mediate cell death in part by elevating the level of cathepsin L resulting in increased cytosolic activity. Surprisingly, we found that p55α/p50α localize to the nucleus where they bind to chromatin and regulate transcription of a subset of inflammatory/acute phase genes that are also Stat3 targets. Our findings reveal a novel role for these PI3K regulatory subunits as regulators of LM-PCD in vivo.


Assuntos
Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Animais , Morte Celular/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética
7.
Diabetologia ; 52(6): 1197-207, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19357831

RESUMO

AIMS/HYPOTHESIS: Previous findings in rodents used as a model of diabetes suggest that insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but, unexpectedly, conserved in liver, despite impaired hepatic protein kinase B (PKB/Akt) activation. Moreover, aPKC at least partly regulates two major transactivators: (1) hepatic sterol receptor binding protein-1c (SREBP-1c), which controls lipid synthesis; and (2) nuclear factor kappa B (NFkappaB), which promotes inflammation and systemic insulin resistance. METHODS: In Goto-Kakizaki rats used as a model of type 2 diabetes, we examined: (1) whether differences in hepatic aPKC and PKB activation reflect differences in activation of IRS-1- and IRS-2-dependent phosphatidylinositol 3-kinase (PI3K); (2) whether hepatic SREBP-1c and NFkappaB are excessively activated by aPKC; and (3) metabolic consequences of excessive activation of hepatic aPKC, SREBP-1c and NFkappaB. RESULTS: In liver, as well as in muscle, IRS-2/PI3K activation by insulin was intact, whereas IRS-1/PI3K activation by insulin was impaired. Moreover, hepatic IRS-2 is known to control hepatic aPKC during insulin activation. Against this background, selective inhibition of hepatic aPKC by adenoviral-mediated expression of mRNA encoding kinase-inactive aPKC or short hairpin RNA targeting Irs2 mRNA and partially depleting hepatic IRS-2 diminished hepatic SREBP-1c production and NFkappaB activities, concomitantly improving serum lipids and insulin signalling in muscle and liver. Similar improvements in SREBP-1c, NFkappaB and insulin signalling were seen in ob/ob mice following inhibition of hepatic aPKC. CONCLUSIONS/INTERPRETATION: In diabetic rodent liver, diminished PKB activation may largely reflect impaired IRS-1/PI3K activation, while conserved aPKC activation reflects retained IRS-2/PI3K activity. Hepatic aPKC may also contribute importantly to excessive SREPB-1c and NFkappaB activities. Excessive hepatic aPKC-dependent activation of SREBP-1c and NFkappaB may contribute importantly to hyperlipidaemia and systemic insulin resistance.


Assuntos
Diabetes Mellitus/metabolismo , Hiperlipidemias/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Análise de Variância , Animais , Glicemia/metabolismo , Western Blotting , Colesterol/sangue , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Hiperlipidemias/fisiopatologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Músculos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/sangue
8.
Cell Mol Life Sci ; 62(3): 320-43, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15723168

RESUMO

There are many theories of aging and parameters that influence lifespan, including genetic instability, telomerase activity and oxidative stress. The role of caloric restriction, metabolism and insulin and insulin-like growth factor-1 signaling in the process of aging is especially well conserved throughout evolution. These latter factors interact with each other, the former factors and histone deacetylases of the SIR family in a complex interaction to influence lifespan.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Insulina/fisiologia , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento , Animais , Humanos
9.
Diabetologia ; 47(3): 407-411, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14730378

RESUMO

AIMS/HYPOTHESIS: The metabolic abnormalities of insulin resistance are ameliorated by insulin sensitisers via different mechanisms. Metformin decreases hepatic glucose output, whereas rosiglitazone (RSG) is an agonist for peroxisome proliferator activated receptor (PPAR)gamma, highly expressed in fat. To gain insight into the mechanisms of action of these drugs, we compared their actions in two models of insulin resistance: the obese, hyperglycaemic ob/ob mouse and the liver specific insulin receptor knockout (LIRKO) mouse. METHODS: Control, ob/ob, and LIRKO mice were divided into three groups that received metformin (300 mg/kg body weight/day), RSG (3 mg/kg body weight/day), or placebo for 3 weeks. RESULTS: In the presence of the severe hepatic insulin resistance of the LIRKO mouse, neither metformin nor RSG had any significant effect on glucose or insulin tolerance tests. On the other hand, RSG decreased serum concentrations of total cholesterol, LDL, and HDL in LIRKO mice. Adipocyte PPARgamma gene and protein expression, and adipocyte size were all increased in LIRKO mice treated with RSG, whereas fat-cell size in control animals was decreased by RSG. CONCLUSION/INTERPRETATION: TZDs probably improve some lipid parameters of the dysmetabolic syndrome associated with diabetes mellitus even in the presence of absolute hepatic insulin resistance, but both metformin and TZDs require an operating insulin signalling system in the liver for their effects in glucose homeostasis.


Assuntos
Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Fígado/fisiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Teste de Tolerância a Glucose , Lipídeos/sangue , Fígado/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Obesos , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Rosiglitazona , Tiazolidinedionas/farmacologia
10.
J Endocrinol ; 179(2): 253-66, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14596677

RESUMO

Insulin receptor substrate (IRS)-1 and IRS-2 are the major substrates that mediate insulin action. Insulin itself regulates the expression of the IRS protein in the liver, but the underlying mechanisms of IRS-1 and IRS-2 regulation are not fully understood. Here we report that insulin suppressed the expression of both IRS-1 and IRS-2 proteins in Fao hepatoma cells. The decrease in IRS-1 protein occurred via proteasomal degradation without any change in IRS-1 mRNA, whereas the insulin-induced suppression of IRS-2 protein was associated with a parallel decrease in IRS-2 mRNA without changing IRS-2 mRNA half-life. The insulin-induced suppression of IRS-2 mRNA and protein was blocked by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, but not by the MAP kinase-ERK kinase (MEK) inhibitor, PD098059. Inhibition of Akt by overexpression of dominant-negative Akt also caused complete attenuation of the insulin-induced decrease in IRS-2 protein and partial attenuation of its mRNA down-regulation. Some nuclear proteins bound to the insulin response element (IRE) sequence on the IRS-2 gene in an insulin-dependent manner in vitro, and the binding was also blocked by the PI 3-kinase inhibitor. Reporter gene assay showed that insulin suppressed the activity of both human and rat IRS-2 gene promoters through the IRE in a PI 3-kinase-dependent manner. Our results indicate that insulin regulates IRS-1 and IRS-2 through different mechanisms and that insulin represses IRS-2 gene expression via a PI 3-kinase/Akt pathway.


Assuntos
Insulina/farmacologia , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Carcinoma Hepatocelular , Linhagem Celular , Cromonas/farmacologia , Cicloeximida/farmacologia , Depressão Química , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/análise , Ratos , Alinhamento de Sequência
11.
Endocrinology ; 144(6): 2683-94, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12746333

RESUMO

Insulin receptor substrates (IRS) are central integrators of hormone, cytokine, and growth factor signaling. IRS proteins can be phosphorylated by a number of signaling pathways critical to normal mammary gland development. Studies in transgenic mice that overexpress IGF-I in the mammary gland suggested that IRS expression is important in the regulation of normal postlactational mammary involution. The goal of these studies was to examine IRS expression in the mouse mammary gland and determine the importance of IRS-1 to mammary development in the virgin mouse. IRS-1 and -2 show distinct patterns of protein expression in the virgin mouse mammary gland, and protein abundance is dramatically increased during pregnancy and lactation, but rapidly lost during involution. Consistent with hormone regulation, IRS-1 protein levels are reduced by ovariectomy, induced by combined treatment with estrogen and progesterone, and vary considerably throughout the estrous cycle. These changes occur without similar changes in mRNA levels, suggesting posttranscriptional control. Mammary glands from IRS-1 null mice have smaller fat pads than wild-type controls, but this reduction is proportional to the overall reduction in body size. Development of the mammary duct (terminal endbuds and branch points) is not altered by the loss of IRS-1, and pregnancy-induced proliferation is not changed. These data indicate that IRS undergo complex developmental and hormonal regulation in the mammary gland, and that IRS-1 is more likely to regulate mammary function in lactating mice than in virgin or pregnant mice.


Assuntos
Estrogênios/farmacologia , Glândulas Mamárias Animais/fisiologia , Fosfoproteínas/genética , Progesterona/farmacologia , Transdução de Sinais/fisiologia , Tecido Adiposo/química , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/fisiologia , Animais , Ciclo Estral/fisiologia , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos , Ovariectomia , Fosfoproteínas/análise , Gravidez , Transdução de Sinais/efeitos dos fármacos
12.
J Med Genet ; 39(10): 722-33, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12362029

RESUMO

Generalised lipodystrophy of the Berardinelli-Seip type (BSCL) is a rare autosomal recessive human disorder with severe adverse metabolic consequences. A gene on chromosome 9 (BSCL1) has recently been identified, predominantly in African-American families. More recently, mutations in a previously undescribed gene of unknown function (BSCL2) on chromosome 11, termed seipin, have been found to be responsible for this disorder in a number of European and Middle Eastern families. We have studied the genotype/phenotype relationships in 70 affected subjects from 44 apparently unrelated pedigrees of diverse ethnic origin. In all subjects, hepatic dysfunction, hyperlipidaemia, diabetes mellitus, and hypertrophic cardiomyopathy were significant contributors to morbidity with no clear differences in their prevalence between subjects with BSCL1 or BSCL2 and those with evidence against cosegregation with either chromosome 9 or 11 (designated BSCLX). BSCL2 appears to be a more severe disorder than BSCL1 with a higher incidence of premature death and a lower prevalence of partial and/or delayed onset of lipodystrophy. Notably, subjects with BSCL2 had a significantly higher prevalence of intellectual impairment than those with BSCL1 or BSCLX (p<0.0001, OR 17.0, CI 3.6 to 79.0). The higher prevalence of intellectual impairment and the increased risk of premature death in BSCL2 compared to BSCL1 emphasise the importance of molecular diagnosis of this syndrome and have clear implications for genetic counselling.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia/congênito , Lipodistrofia/genética , Adolescente , Adulto , Idade de Início , Alelos , Estudos de Coortes , Feminino , Genótipo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Hiperlipidemias/genética , Lactente , Recém-Nascido , Lipodistrofia/metabolismo , Lipodistrofia/mortalidade , Masculino , Mutação/genética , Linhagem , Fenótipo , Isoformas de Proteínas/genética
13.
J Endocrinol ; 174(2): 309-19, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12176670

RESUMO

Insulin receptor substrate 1 (IRS-1) gene polymorphisms have been identified in type 2 diabetic patients; however, it is unclear how such polymorphisms contribute to the development of diabetes. Here we introduced obesity in heterozygous IRS-1 knockout (IRS-1(+/-)) mice by gold-thioglucose (GTG) injection and studied the impact of reduced IRS-1 expression on obesity-linked insulin resistance. GTG injection resulted in approximately 30% weight gain in IRS-1(+/-) and wild type (WT) mice, compared with saline-injected controls. There was no difference in insulin sensitivity between lean IRS-1(+/-) and lean WT. Elevated fasting insulin levels but no change in fasting glucose were noted in obese IRS-1(+/-) and WT compared with the respective lean controls. Importantly, fasting insulin in obese IRS-1(+/-) was 1.5-fold higher (P<0.05) than in obese WT, and an insulin tolerance test showed a profound insulin resistance in obese IRS-1(+/-) compared with obese WT. The islets of obese IRS-1(+/-) were 1.4-fold larger than those of obese WT. The expression of insulin receptor and IRS-1 and IRS-2 was decreased in obese IRS-1(+/-), which could in part explain the profound insulin resistance in these mice. Our results suggest that IRS-1 is the suspected gene for type 2 diabetes and its polymorphisms could worsen insulin resistance in the presence of other additional factors, such as obesity.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/metabolismo , Fosfoproteínas/fisiologia , Animais , Aurotioglucose , Diabetes Mellitus Tipo 2/metabolismo , Insulina , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/química , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Músculo Esquelético/química , Obesidade/genética , Obesidade/patologia , Pâncreas/patologia , Fosfatidilinositol 3-Quinases/análise , Fosfoproteínas/análise , Fosfoproteínas/genética , Receptor de Insulina/análise
14.
Diabetologia ; 45(5): 657-67, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12107746

RESUMO

AIMS/HYPOTHESIS: We examined the properties of a mutant insulin receptor (IR) with an Arg(252) to Cys (IR(R252C)) substitution in the alpha-subunit originally identified in a patient with extreme insulin resistance and acanthosis nigricans. METHODS: We studied IR cell biology and signalling pathways in Chinese Hamster Ovary cells overexpressing this IR(R252C). RESULTS: Our investigation showed an impairment in insulin binding to IR(R252C) related mostly to a reduced affinity of the receptor for insulin and to a reduced rate of IR(R252C) maturation; an inhibition of IR(R252C)-mediated endocytosis resulting in a decreased insulin degradation and insulin-induced receptor down-regulation; a maintenance of IR(R252C) on microvilli even in the presence of insulin; a similar autophosphorylation of mutant IR(R252C) followed by IRS 1/IRS 2 phosphorylation, p85 association with IRS 1 and IRS 2 and Akt phosphorylation similar to those observed in cells expressing wild type IR (IRwt); and finally, a reduced insulin-induced Shc phosphorylation accompanied by decreased ERK1/2 phosphorylation and activity and of thymidine incorporation into DNA in cells expressing IR(R252C) as compared to cells expressing IRwt. CONCLUSION/INTERPRETATION: These observations suggest that: parameters other than tyrosine kinase activation participate in or control the first steps of IR internalisation or both; IR-mediated IRS 1/2 phosphorylation can be achieved from the cell surface and microvilli in particular; Shc phosphorylation and its subsequent signalling pathway might require IR internalisation; defective IR endocytosis correlates with an enhancement of some biological responses to insulin and attenuation of others.


Assuntos
Acantose Nigricans/genética , Arginina , Cisteína , Resistência à Insulina/genética , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Adulto , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , DNA/biossíntese , Humanos , Insulina/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Subunidades Proteicas , Transporte Proteico , Receptor de Insulina/fisiologia , Proteínas Recombinantes/metabolismo , Timidina/metabolismo , Transfecção
15.
Nat Genet ; 31(1): 111-5, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11923875

RESUMO

Regulation of glucose homeostasis by insulin depends on the maintenance of normal beta-cell mass and function. Insulin-like growth factor 1 (Igf1) has been implicated in islet development and differentiated function, but the factors controlling this process are poorly understood. Pancreatic islets produce Igf1 and Igf2, which bind to specific receptors on beta-cells. Igf1 has been shown to influence beta-cell apoptosis, and both Igf1 and Igf2 increase islet growth; Igf2 does so in a manner additive with fibroblast growth factor 2 (ref. 10). When mice deficient for the Igf1 receptor (Igf1r(+/-)) are bred with mice lacking insulin receptor substrate 2 (Irs2(-/-)), the resulting compound knockout mice show a reduction in mass of beta-cells similar to that observed in pancreas of Igf1r(-/-) mice (ref. 11), suggesting a role for Igf1r in growth of beta-cells. It is possible, however, that the effects in these mice occur secondary to changes in vascular endothelium or in the pancreatic ductal cells, or because of a decrease in the effects of other hormones implicated in islet growth. To directly define the role of Igf1, we have created a mouse with a beta-cell-specific knockout of Igf1r (betaIgf1r(-/-)). These mice show normal growth and development of beta-cells, but have reduced expression of Slc2a2 (also known as Glut2) and Gck (encoding glucokinase) in beta-cells, which results in defective glucose-stimulated insulin secretion and impaired glucose tolerance. Thus, Igf1r is not crucial for islet beta-cell development, but participates in control of differentiated function.


Assuntos
Intolerância à Glucose/etiologia , Hiperinsulinismo/etiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Receptor IGF Tipo 1/deficiência , Animais , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Transdução de Sinais
16.
Horm Metab Res ; 33(12): 696-700, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11753753

RESUMO

The purpose of this study was to determine the influence of insulin receptor substrate-1 (IRS-1) expression on GLUT1 and GLUT4 glucose transporter protein abundance, contraction-stimulated glucose uptake, and contraction-induced glycogen depletion by skeletal muscle. Mice (6 months old) from three genotypes were studied: wild-type (IRS-1(+/+)), heterozygous (IRS-1(+/-)) for the null allele, and IRS-1 knockouts (IRS-1(-/-)) lacking a functional IRS-1 gene. In situ muscle contraction was induced (electrical stimulation of sciatic nerve) in one hindlimb using contralateral muscles as controls. Soleus and extensor digitorum longus were dissected and 2-deoxyglucose uptake was measured in vitro. 2-Deoxyglucose uptake was higher in basal muscles (no contractions) from IRS-1(-/-) vs. both other genotypes. Contraction-stimulated 2-deoxyglucose uptake and glycogen depletion did not differ among genotypes. Muscle IRS-1 protein was undetectable for IRS-1(-/-) mice, and values were approximately 40 % lower in IRS-1(+/-) than in IRS-1(+/+) mice. No difference was found in IRS-1(+/+) compared to IRS-1(-/-) groups regarding muscle abundance of GLUT1 and GLUT4. Substantial reduction or elimination of IRS-1 did not alter the hallmark effects of contractions on muscle carbohydrate metabolism--activation of glucose uptake and glycogen depletion.


Assuntos
Desoxiglucose/metabolismo , Proteínas de Transporte de Monossacarídeos/análise , Contração Muscular/fisiologia , Proteínas Musculares , Músculo Esquelético/metabolismo , Fosfoproteínas/deficiência , Animais , Peso Corporal , Estimulação Elétrica , Feminino , Transportador de Glucose Tipo 1 , Transportador de Glucose Tipo 4 , Glicogênio/metabolismo , Proteínas Substratos do Receptor de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/química , Tamanho do Órgão , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Nervo Isquiático
17.
Nature ; 414(6865): 799-806, 2001 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-11742412

RESUMO

The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Ubiquitina-Proteína Ligases , Tecido Adiposo/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-cbl , Receptor de Insulina/metabolismo
18.
J Clin Invest ; 108(8): 1205-13, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11602628

RESUMO

Although insulin regulates metabolism in both brown and white adipocytes, the role of these tissues in energy storage and utilization is quite different. Recombination technology using the Cre-loxP approach allows inactivation of the insulin receptor in a tissue-specific manner. Mice lacking insulin receptors in brown adipocytes show an age-dependent loss of interscapular brown fat but increased expression of uncoupling protein-1 and -2. In parallel, these mice develop an insulin-secretion defect resulting in a progressive glucose intolerance, without insulin resistance. This model provides direct evidence for not only a role for the insulin receptors in brown fat adipogenesis, the data also suggest a novel role of brown adipose tissue in the regulation of insulin secretion and glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , RNA/genética , RNA/metabolismo , Transdução de Sinais , Distribuição Tecidual
19.
Nature ; 413(6852): 131-8, 2001 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-11557972

RESUMO

Blood glucose levels are maintained by the balance between glucose uptake by peripheral tissues and glucose secretion by the liver. Gluconeogenesis is strongly stimulated during fasting and is aberrantly activated in diabetes mellitus. Here we show that the transcriptional coactivator PGC-1 is strongly induced in liver in fasting mice and in three mouse models of insulin action deficiency: streptozotocin-induced diabetes, ob/ob genotype and liver insulin-receptor knockout. PGC-1 is induced synergistically in primary liver cultures by cyclic AMP and glucocorticoids. Adenoviral-mediated expression of PGC-1 in hepatocytes in culture or in vivo strongly activates an entire programme of key gluconeogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase, leading to increased glucose output. Full transcriptional activation of the PEPCK promoter requires coactivation of the glucocorticoid receptor and the liver-enriched transcription factor HNF-4alpha (hepatic nuclear factor-4alpha) by PGC-1. These results implicate PGC-1 as a key modulator of hepatic gluconeogenesis and as a central target of the insulin-cAMP axis in liver.


Assuntos
Glicemia/metabolismo , Proteínas de Ligação a DNA , Gluconeogênese , Fígado/metabolismo , Fatores de Transcrição/fisiologia , Células 3T3 , Motivos de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Jejum , Fator 4 Nuclear de Hepatócito , Hormônios/metabolismo , Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
20.
Nat Genet ; 28(4): 365-70, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11479539

RESUMO

Congenital generalized lipodystrophy, or Berardinelli-Seip syndrome (BSCL), is a rare autosomal recessive disease characterized by a near-absence of adipose tissue from birth or early infancy and severe insulin resistance. Other clinical and biological features include acanthosis nigricans, hyperandrogenism, muscular hypertrophy, hepatomegaly, altered glucose tolerance or diabetes mellitus, and hypertriglyceridemia. A locus (BSCL1) has been mapped to 9q34 with evidence of heterogeneity. Here, we report a genome screen of nine BSCL families from two geographical clusters (in Lebanon and Norway). We identified a new disease locus, designated BSCL2, within the 2.5-Mb interval flanked by markers D11S4076 and D11S480 on chromosome 11q13. Analysis of 20 additional families of various ethnic origins led to the identification of 11 families in which the disease cosegregates with the 11q13 locus; the remaining families provide confirmation of linkage to 9q34. Sequence analysis of genes located in the 11q13 interval disclosed mutations in a gene homologous to the murine guanine nucleotide-binding protein (G protein), gamma3-linked gene (Gng3lg) in all BSCL2-linked families. BSCL2 is most highly expressed in brain and testis and encodes a protein (which we have called seipin) of unknown function. Most of the variants are null mutations and probably result in a severe disruption of the protein. These findings are of general importance for understanding the molecular mechanisms underlying regulation of body fat distribution and insulin resistance.


Assuntos
Cromossomos Humanos Par 11/genética , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia/congênito , Lipodistrofia/genética , Proteínas/genética , Acantose Nigricans/complicações , Cromossomos Humanos Par 9/genética , Análise por Conglomerados , Análise Mutacional de DNA , Complicações do Diabetes , Feminino , Genes Recessivos , Ligação Genética , Marcadores Genéticos , Testes Genéticos , Haplótipos , Hepatomegalia/complicações , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Hiperandrogenismo/complicações , Hipertrigliceridemia/complicações , Resistência à Insulina/genética , Líbano/epidemiologia , Lipodistrofia/complicações , Lipodistrofia/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Noruega/epidemiologia , Especificidade de Órgãos , Linhagem , Estrutura Terciária de Proteína , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...