Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 14(8): e0219436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390367

RESUMO

RAS is the founding member of a superfamily of GTPases and regulates signaling pathways involved in cellular growth control. While recent studies have shown that the activation state of RAS can be controlled by lysine ubiquitylation and acetylation, the existence of lysine methylation of the RAS superfamily GTPases remains unexplored. In contrast to acetylation, methylation does not alter the side chain charge and it has been challenging to deduce its impact on protein structure by conventional amino acid substitutions. Herein, we investigate lysine methylation on RAS and RAS-related GTPases. We developed GoMADScan (Go language-based Modification Associated Database Scanner), a new user-friendly application that scans and extracts posttranslationally modified peptides from databases. The GoMADScan search on PhosphoSitePlus databases identified methylation of conserved lysine residues in the core GTPase domain of RAS superfamily GTPases, including residues corresponding to RAS Lys-5, Lys-16, and Lys-117. To follow up on these observations, we immunoprecipitated endogenous RAS from HEK293T cells, conducted mass spectrometric analysis and found that RAS residues, Lys-5 and Lys-147, undergo dimethylation and monomethylation, respectively. Since mutations of Lys-5 have been found in cancers and RASopathies, we set up molecular dynamics (MD) simulations to assess the putative impact of Lys-5 dimethylation on RAS structure. Results from our MD analyses predict that dimethylation of Lys-5 does not significantly alter RAS conformation, suggesting that Lys-5 methylation may alter existing protein interactions or create a docking site to foster new interactions. Taken together, our findings uncover the existence of lysine methylation as a novel posttranslational modification associated with RAS and the RAS superfamily GTPases, and putative impact of Lys-5 dimethylation on RAS structure.


Assuntos
Mineração de Dados/métodos , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Metilação , Simulação de Dinâmica Molecular , Domínios Proteicos
3.
Mol Cell ; 61(2): 187-98, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26774281

RESUMO

While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Guanosina Trifosfato/metabolismo , Espaço Intracelular/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Cristalografia por Raios X , Células HEK293 , Humanos , Hidrólise , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Proteômica , Transdução de Sinais
4.
J Biol Chem ; 289(7): 3950-9, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24338482

RESUMO

Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.


Assuntos
Citocinese/fisiologia , Dictyostelium/enzimologia , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Protozoários/metabolismo , Ubiquitinação/fisiologia , Proteínas ras/metabolismo , Dictyostelium/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas de Protozoários/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas ras/genética
5.
Cancer Discov ; 1(1): 35-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22140652

RESUMO

UNLABELLED: Using an integrative genomics approach called amplification breakpoint ranking and assembly analysis, we nominated KRAS as a gene fusion with the ubiquitin-conjugating enzyme UBE2L3 in the DU145 cell line, originally derived from prostate cancer metastasis to the brain. Interestingly, analysis of tissues revealed that 2 of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 cells, UBE2L3-KRAS produces a fusion protein, a specific knockdown of which attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates MEK/ERK signaling, commonly engaged by oncogenic mutant KRAS, and instead signals via AKT and p38 mitogen-activated protein kinase (MAPK) pathways. This is the first report of a gene fusion involving the Ras family, suggesting that this aberration may drive metastatic progression in a rare subset of prostate cancers. SIGNIFICANCE: This is the first description of an oncogenic gene fusion of KRAS, one of the most studied proto-oncogenes. KRAS rearrangement may represent the driving mutation in a rare subset of metastatic prostate cancers, emphasizing the importance of RAS-RAF-MAPK signaling in this disease.


Assuntos
Rearranjo Gênico , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/genética , Fusão Gênica , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-akt/genética , Enzimas de Conjugação de Ubiquitina/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Sci Signal ; 4(163): ra13, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21386094

RESUMO

The guanosine triphosphate (GTP)--loaded form of the guanosine triphosphatase (GTPase) Ras initiates multiple signaling pathways by binding to various effectors, such as the kinase Raf and phosphatidylinositol 3-kinase (PI3K). Ras activity is increased by guanine nucleotide exchange factors that stimulate guanosine diphosphate release and GTP loading and is inhibited by GTPase-activating proteins that stimulate GTP hydrolysis. KRAS is the most frequently mutated RAS gene in cancer. Here, we report that monoubiquitination of lysine-147 in the guanine nucleotide-binding motif of wild-type K-Ras could lead to enhanced GTP loading. Furthermore, ubiquitination increased the binding of the oncogenic Gly12Val mutant of K-Ras to the downstream effectors PI3K and Raf. Thus, monoubiquitination could enhance GTP loading on K-Ras and increase its affinity for specific downstream effectors, providing a previously unidentified mechanism for Ras activation.


Assuntos
Modelos Moleculares , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitinação/fisiologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatografia de Afinidade , Guanosina Trifosfato/metabolismo , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Espectrometria de Massas em Tandem , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...