Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 57(21): 13929-13936, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351921

RESUMO

A new chromium(V)-oxo complex, [CrV(O)(6-COO--py-tacn)]2+ (1; 6-COO--py-tacn = 1-(6-carboxylato-2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), was synthesized and characterized to evaluate the reactivity of CrV(O) complexes in a hydrogen-atom transfer (HAT) reaction by comparing it with that of a previously reported CrV(O) complex, [CrV(O)(6-COO--tpa)]2+ (2; 6-COO--tpa = N, N-bis(2-pyridylmethyl)- N-(6-carboxylato-2-pyridylmethyl)amine). Definitive differences of these two CrV(O) complexes were observed in resonance Raman scatterings of the Cr-O bond (ν = 911 cm-1 for 1 and 951 cm-1 for 2) and the reduction potential (0.73 V vs SCE for 1 and 1.23 V for 2); this difference should be derived from that of the ligand bound at the trans position to the oxo ligand, a tertiary amino group in 1, and a pyridine nitrogen in 2. When we employed 9,10-dihydroanthracene as a substrate, the second-order rate constant ( k) of 1 was 4000 times smaller than that of 2. Plots of normalized k values for both complexes relative to bond dissociation energies (BDEs) of C-H bonds to be cleaved in several substrates showed a pair of parallel lines with slopes of -0.91 for 1 and -0.62 for 2, indicating that the HAT reactions by the two complexes proceed via almost the same transition states. Judging from estimated BDEs of CrIV(OH)/CrV(O) (85-87 kcal mol-1 for 1 and 92-94 kcal mol-1 for 2) and the activation barrier in the HAT reaction of DHA ( Ea = 7.9 kcal mol-1 for 1 and Ea = 4.8 kcal mol-1 for 2), the reactivity of CrV(O) complexes in HAT reactions depends on the energy level of the reactant state rather than the product state.

2.
Chem Sci ; 6(2): 945-955, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560181

RESUMO

A mononuclear Cr(v)-oxo complex, [CrV(O)(6-COO--tpa)](BF4)2 (1; 6-COO--tpa = N,N-bis(2-pyridylmethyl)-N-(6-carboxylato-2-pyridylmethyl)amine) was prepared through the reaction of a Cr(iii) precursor complex with iodosylbenzene as an oxidant. Characterization of 1 was achieved using ESI-MS spectrometry, electron paramagnetic resonance, UV-vis, and resonance Raman spectroscopies. The reduction potential (Ered) of 1 was determined to be 1.23 V vs. SCE in acetonitrile based on analysis of the electron-transfer (ET) equilibrium between 1 and a one-electron donor, [RuII(bpy)3]2+ (bpy = 2,2'-bipyridine). The reorganization energy (λ) of 1 was also determined to be 1.03 eV in ET reactions from phenol derivatives to 1 on the basis of the Marcus theory of ET. The smaller λ value in comparison with that of an Fe(iv)-oxo complex (2.37 eV) is caused by the small structural change during ET due to the dπ character of the electron-accepting LUMO of 1. When benzyl alcohol derivatives (R-BA) with different oxidation potentials were employed as substrates, corresponding aldehydes were obtained as the 2e--oxidized products in moderate yields as determined from 1H NMR and GC-MS measurements. One-step UV-vis spectral changes were observed in the course of the oxidation reactions of BA derivatives by 1 and a kinetic isotope effect (KIE) was observed in the oxidation reactions for deuterated BA derivatives at the benzylic position as substrates. These results indicate that the rate-limiting step is a concerted proton-coupled electron transfer (PCET) from substrate to 1. In sharp contrast, in the oxidation of trimethoxy-BA (Eox = 1.22 V) by 1, trimethoxy-BA radical cation was observed by UV-vis spectroscopy. Thus, it was revealed that the mechanism of the oxidation reaction changed from one-step PCET to stepwise ET-proton transfer (ET/PT), depending on the redox potentials of R-BA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...