Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(3): 2019-2030, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38265364

RESUMO

As the primary enzyme responsible for the activatable conversion of Irinotecan (CPT-11) to SN-38, carboxylesterase 2 (CES2) is a significant predictive biomarker toward CPT-11-based treatments for pancreatic ductal adenocarcinoma (PDAC). High SN-38 levels from high CES2 activity lead to harmful effects, including life-threatening diarrhea. While alternate strategies have been explored, CES2 inhibition presents an effective strategy to directly alter the pharmacokinetics of CPT-11 conversion, ultimately controlling the amount of SN-38 produced. To address this, we conducted a high-throughput screening to discover 18 small-molecule CES2 inhibitors. The inhibitors are validated by dose-response and counter-screening and 16 of these inhibitors demonstrate selectivity for CES2. These 16 inhibitors inhibit CES2 in cells, indicating cell permeability, and they show inhibition of CPT-11 conversion with the purified enzyme. The top five inhibitors prohibited cell death mediated by CPT-11 when preincubated in PDAC cells. Three of these inhibitors displayed a tight-binding mechanism of action with a strong binding affinity.


Assuntos
Carboxilesterase , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camptotecina/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Irinotecano/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Carboxilesterase/antagonistas & inibidores
2.
Chem Commun (Camb) ; 58(78): 10929-10932, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36065979

RESUMO

Carboxylesterase 2 (CES2) has crucial roles in both xenobiotic metabolism and formation of pathogenic states including cancer. Thus, it is highly critical to monitor intracellular CES2 activity in living cancer cells. Here, we report a CES2 activatable phenoxy 1,2-dioxetane based chemiluminescent agent (CL-CES2). The probe exhibited a selective turn-on response in the presence of CES2 enzyme and enabled detection of CES2 activity in three different cancer cells that possess varying enzyme concentrations with high signal to noise ratios. In contrast no signal was obtained with CES1, an isoform of CES2 enzyme. CL-CES2 marks the first ever example of a CES2-responsive chemiluminescent luminophore and holds a great potential in further understanding the roles of CES2 activity in tumorogenesis.


Assuntos
Hidrolases de Éster Carboxílico , Neoplasias , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Isoformas de Proteínas , Xenobióticos
3.
J Med Chem ; 65(13): 8855-8868, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700557

RESUMO

Human carboxylesterase 2 (hCES2) converts anticancer prodrugs, such as irinotecan, into their active metabolites via phase I drug metabolism. Owing to interindividual variability, hCES2 serves as a predictive marker of patient response to hCES2-activated prodrug-based therapy, whereby a low intratumoral hCES2 activity leads to therapeutic resistance. Despite the ability to identify nonresponders, effective treatments for resistant patients are needed. Clinically approved photodynamic therapy is an attractive alternative for irinotecan-resistant patients. Here, we describe the application of our hCES2-selective small-molecule ratiometric fluorescent chemosensor, Benz-AP, as a single theranostic agent given its discovered functionality as a photosensitizer. Benz-AP produces singlet oxygen and induces photocytotoxicity in cancer cells in a strong negative correlation with hCES2 activity. Two-photon excitation of Benz-AP produces fluorescence, singlet oxygen, and photocytotoxicity in tumor spheroids. Overall, Benz-AP serves as a novel theranostic agent with selective photocytotoxicity in hCES2-prodrug resistant cancer cells, making Benz-AP a promising agent for in vivo applications.


Assuntos
Neoplasias , Fotoquimioterapia , Pró-Fármacos , Fluorescência , Humanos , Irinotecano/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Oxigênio Singlete
4.
ACS Med Chem Lett ; 12(8): 1295-1301, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413959

RESUMO

Phenalenone is a synthetically accessible, highly efficient photosensitizer with a near-unity singlet oxygen quantum yield. Unfortunately, its UV absorption and lack of fluorescence has made it unsuitable for fluorescence-guided photodynamic therapy against cancer. In this work, we synthesized a series of phenalenone derivatives containing electron-donating groups to red-shift the absorption spectrum and bromine(s) to permit good singlet oxygen production via the heavy-atom effect. Of the derivatives synthesized, the phenalenone containing an amine at the 6-position with bromines at the 2- and 5-positions (OE19) exhibited the longest absorption wavelength (i.e., green) and produced both singlet oxygen and red fluorescence efficiently. OE19 induced photocytotoxicity with nanomolar potency in 2D cultured PANC-1 cancer cells as well as light-induced destruction of PANC-1 spheroids with minimal dark toxicity. Overall, OE19 opens up the possibility of employing phenalenone-based photosensitizers as theranostic agents for photodynamic cancer therapy.

5.
Chem Sci ; 10(36): 8428-8437, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803422

RESUMO

Irinotecan-based therapy is a common treatment for pancreatic cancer. To elicit its anticancer activity, the drug requires first the hydrolysis action of the enzyme human carboxylesterase 2 (hCES2). It has been established that pancreatic cancer patients have various levels of hCES2, whereby patients having low levels respond poorer to Irinotecan than patients with higher levels, suggesting that hCES2 can be used to predict response. However, current methods that measure hCES2 activity are inaccurate, complex or lengthy, thus being incompatible for use in a clinical setting. Here, we developed a small molecule ratiometric fluorescent chemosensor that accurately measures hCES2 activity in a single-step within complex mixtures. Our chemosensor is highly selective for hCES2 over hCES1, cell permeable and can measure hCES2 activity in pancreatic cancer patient-derived xenografts. Given the simplicity, accuracy and tissue compatibility of our assay, we anticipate our chemosensor can be used to predict patient response to Irinotecan-based therapy.

6.
Chembiochem ; 20(3): 345-349, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423216

RESUMO

Photodynamic therapy (PDT) has been successfully used to treat a variety of cancers. However, one drawback has been the adverse side effects experienced by patients during therapy, as a result of the destruction of normal tissues upon irradiation. Herein, we describe the design, synthesis and characterisation of a photosensitiser to overcome this issue that, in addition to light, is also dependent on the overactive redox system present in cancer cells for its activation. Our probe consists of the photosensitiser, protoporphyrin IX, and a FRET-based quencher dye, BHQ-3, on a scaffold containing a disulfide bond. The close proximity of BHQ-3 to protoporphyrin IX quenches its ability to fluoresce and produce reactive oxygen species, whereas nonenzymatic or enzymatic reduction can recover its native properties. We further demonstrate its ability to be activated in cancer cells in a thiol-dependent manner and destroy breast and lung cancer cells upon red-light irradiation.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/uso terapêutico , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/diagnóstico por imagem , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Luz , Neoplasias Pulmonares/diagnóstico por imagem , Células MCF-7 , Estrutura Molecular , Imagem Óptica , Oxirredução , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Protoporfirinas/síntese química , Protoporfirinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...