Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 239(2): 253-265, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143557

RESUMO

Placental insufficiency causes intrauterine growth restriction (IUGR), a common complication of pregnancy. In skeletal muscle, IUGR reduces fetal myofibril size, reduces myoblast proliferation and reduces expression of genes in cell cycle regulation clusters. The myocardium is striated like skeletal muscle, and IUGR also reduces cell cycle activity and maturation in cardiomyocytes, despite cardiac output preferentially directed to the coronary circulation. We hypothesized that cardiomyocyte growth restriction would be accompanied by similar changes in cell cycle regulation genes and would reduce cardiomyocyte cell cycle activity, number, maturity and size. Pregnant ewes were housed in elevated ambient temperatures from ~40 to ~115 days of gestation (dGA) to produce placental insufficiency and IUGR; fetal hearts were studied at ~134 dGA. Hearts were biopsied for mRNA analysis and then dissociated into individual myocytes (Control n = 8; IUGR n = 15) or dissected (Control n = 9; IUGR n = 13). IUGR fetuses had low circulating insulin and insulin-like growth factor 1 (IGF1) and high circulating cortisol. Bodies and hearts of IUGR fetuses were lighter than those of Controls. Cardiomyocytes of IUGR fetuses were smaller, less mature, less active in the cell cycle and less numerous than in Controls. Further, there was a pattern of downregulation of cell cycle genes in IUGR ventricles. IUGR growth profiles in heart and skeletal muscle suggest similar regulation despite differences in blood and nutrient delivery prioritization. IGF1 signaling is suggested as a mechanism regulating altered growth in IUGR striated muscle and a potential therapeutic candidate.


Assuntos
Retardo do Crescimento Fetal/patologia , Coração Fetal/patologia , Miócitos Cardíacos/fisiologia , Insuficiência Placentária/fisiopatologia , Animais , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/fisiopatologia , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Miócitos Cardíacos/patologia , Insuficiência Placentária/sangue , Gravidez , Ovinos
2.
Endocrinology ; 157(6): 2447-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27049667

RESUMO

Insulin is an important fetal growth factor. However, chronic experimental hyperinsulinemia in the fetus fails to accelerate linear and lean mass growth beyond normal rates. Mechanisms preventing accelerated lean mass accretion during hyperinsulinemia are unknown. To address potential mechanisms, late-gestation fetal sheep were infused with iv insulin and glucose to produce euglycemic hyperinsulinemia (INS) or saline for 7-9 days. Fetal substrate uptake and protein metabolic rates were measured. INS fetuses had 1.5-fold higher insulin concentrations (P < .0001) and equivalent glucose concentrations. INS fetuses had 20% more Pax7(+) nuclei in the biceps femoris, which indicates the potential for hyperinsulinemia to increase the number of myoblasts within late-gestation fetal skeletal muscle. Additionally, the percentage of Pax7(+) myoblasts that expressed Ki-67 was 1.3-fold higher and expression of myogenic regulatory factors was 50% lower in INS fetuses (MYF5 and MYOG [myogenin], P < .005), which indicates a shift toward myoblast proliferation over differentiation. There were no differences for fetal body, organ, or muscle weights, although INS placentas weighed 28% less (P < .05). Protein synthesis and accretion rates did not change in INS fetuses, nor did fiber muscle size. Essential amino acid concentrations were lower in the INS group (P < .05) except for tryptophan. Umbilical blood flow, net total amino acids, and O2 uptakes rates did not differ between groups. Arterial O2 content was 33% lower (P < .005) and norepinephrine was 100% higher in the INS fetuses (P < .01), all of which are factors that may counteract fetal protein accretion during hyperinsulinemia despite an increase in myoblast proliferation.


Assuntos
Hiperinsulinismo/fisiopatologia , Mioblastos/patologia , Animais , Proliferação de Células/fisiologia , Feminino , Feto/metabolismo , Feto/patologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Técnicas In Vitro , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Gravidez , Ovinos
3.
Diabetes ; 64(2): 555-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25249573

RESUMO

Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and ß-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and ß-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of ß-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion.


Assuntos
Feto/fisiologia , Fator de Crescimento de Hepatócito/fisiologia , Ilhotas Pancreáticas/citologia , Pâncreas/irrigação sanguínea , Insuficiência Placentária/veterinária , Ovinos/embriologia , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/fisiologia , Feminino , Retardo do Crescimento Fetal , Gravidez
4.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L894-901, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23605003

RESUMO

Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis. Brief intrapulmonary infusions of 5-HT increased PVR from 1.0 ± 0.07 (baseline) to 1.4 ± 0.22 mmHg/ml per minute of treatment (P < 0.05). Ketanserin decreased PVR from 1.1 ± 0.15 (baseline) to 0.82 ± 0.09 mmHg/ml per minute of treatment (P < 0.05). Sertraline increased PVR from 1.1 ± 0.17 (baseline) to 1.4 ± 0.17 mmHg/ml per minute of treatment (P = 0.01). In addition, we studied 5-HT production and activity in vitro in experimental PPHN. Compared with controls, pulmonary artery endothelial cells from fetal sheep with PPHN exhibited increased expression of tryptophan hydroxylase 1 and 5-HT production by twofold and 56%, respectively. Compared with controls, 5-HT2A R expression was increased in lung homogenates and pulmonary artery smooth muscle cell lysates by 35% and 32%, respectively. We concluded that increased 5-HT contributes to high PVR in experimental PPHN through activation of the 5-HT2A receptor and that SSRI infusion further increases PVR in this model.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Receptor 5-HT2A de Serotonina/genética , Serotonina/metabolismo , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar , Feto , Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Recém-Nascido , Ketanserina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Carneiro Doméstico , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Resistência Vascular/efeitos dos fármacos
5.
J Aerosol Med Pulm Drug Deliv ; 25(1): 7-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22007674

RESUMO

BACKGROUND: Nanoparticles (NPs) produced by nanotechnology processes have taken the field of medicine by storm. Concerns about safety of these NPs in humans, however, have recently been raised. Although studies of NP toxicity have focused on lung disease the mechanistic link between NP exposure and lung injury remained unclear. This is primarily due to a lack of availability of appropriate airway disease models and sophisticated microscopic techniques to study nano-sized particulate delivery and resulting responses. METHODS: Air-liquid interface (ALI) cultures of non-cystic fibrosis (CF) and CF airway epithelial cells were exposed to the FITC-labeled NPs using a PennCentury microsprayer™. Uptake of NPs was assessed by FACS. Laser scanning microscopy (LSM) was performed and the images were analyzed by an advanced imaging software to study particle deposition and uptake. RESULTS: Flow cytometry data revealed that CF cells accumulated increased amounts of NPs. The increased NP uptake could be attributed to the reduced CF transmembrane conductance regulator (CFTR) function as a similar increased retention/uptake was observed in cells whose CFTR expression was downregulated by antisense oligonucleotide. NPs alone did not induce pro-inflammatory cytokine release or cell death. The cell culture system was sensitive to ozone but exposure to the uncoated synthetic NPs used in this study, did not cause any synergistic or suppressive effects. LSM imaging and subsequent image restoration further indicated particle uptake and intracellular localization. Exposure to ozone increased nuclear uptake in both non-CF and CF cells. CONCLUSION: Our findings demonstrate the uptake of NPs using ALI cultures of non-CF and CF airway epithelial cells. The NPs used here were useful in demonstrating uptake by airway epithelial cells without causing adverse effects in presence or absence of ozone. However, to totally exclude toxic effects, chronic studies under in vivo conditions using coated particulates are required.


Assuntos
Brônquios/efeitos dos fármacos , Fibrose Cística/metabolismo , Nanopartículas , Ozônio/toxicidade , Brônquios/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Citocinas/biossíntese , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...