Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 309(Pt 2): 136518, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191763

RESUMO

Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.


Assuntos
Reatores Biológicos , Águas Residuárias , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Fósforo , Polifosfatos , Carbono , Nitrogênio , Água , DNA
2.
Bioresour Technol ; 321: 124397, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33249324

RESUMO

Lignin modifying or extracellular enzymes secreted by the white rot fungi have the ability of degrading wide range of lignocellulosic substrates and organic pollutants. Lignocellulosic biomass, despite being a renewable source of energy, is difficult to hydrolyse (hydrolysis being rate-limiting stage in anaerobic digestion process). Various pre-treatment techniques like physical, chemical, thermo-chemical and biological to enhance the accessibility of microbes to carbohydrates have been studied. Recently, usage of white- rot fungi in a biological pre-treatment technique have received renewed interest due to its low cost and eco-friendly nature. This review deals with: a) lignocellulosic biomass recalcitrance, b) various pre-treatment techniques and its economic feasibility, c) delignification and hydrolysis mechanism using white-rot fungi, d) factors controlling white-rot fungi pre- treatment process, and e) improvement in methane production through solid-state anaerobic digestion of white-rot fungi pre-treated lignocellulosic biomass. Finally a future perspective is also included.


Assuntos
Fungos , Lignina , Anaerobiose , Biomassa , Fungos/metabolismo , Hidrólise , Lignina/metabolismo
3.
Bioresour Technol ; 286: 121368, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071575

RESUMO

The influence of three different fungal strains-namely, Pleurotus ostreatus (PO), Phanerochaete chrysosposrium (PC), and Ganoderma lucidum (GL)-on pretreatment of rice straw, followed by biochemical methane potential assay was evaluated on the basis of structural (Field Emission Scanning Electron Microscopy, X-ray diffraction etc.) and quantitative (soluble chemical oxygen demand, volatile fatty acids, etc.) analysis. Maximum lignocellulosic degradation was obtained with PC pretreated rice straw (36% more than an untreated sample), followed by PO. Enhancement in the methane yield after 5 weeks of inoculation time was obtained after pretreatment, which was 269.99, 295.91, and 339.31 mL/g VSadded, for PO, GL, and PC, respectively, 1.64-2.22-fold higher than the untreated one. Kinetic modelling of cumulative methane yield showed that modified gompertz model showed the best fit among all analysed models. This study demonstrated the usefulness of fungal species in enhancing the methane yield.


Assuntos
Metano , Oryza , Anaerobiose , Biocombustíveis , Hidrólise , Cinética
4.
J Environ Manage ; 232: 188-196, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30472562

RESUMO

Biogas has become an alternative clean source of energy. Agricultural residues being renewable and abundant resources could be efficiently used as a feed for methane production. The recalcitrant behaviour of rice straw marks pretreatment an important step to facilitate the transformation into renewable (methane) energy source. Microwave pretreatment has been considered as one of the most effective method, as it can directly (thermal and nonthermal effects) react with the feedstock and destroy its complex matrix. The present study considered the different temperature and exposure time (i.e., 130-230 °C, 2-5 min). Biochemical methane potential was assessed corresponding to the maximum solubilization rate; specific methane yield was obtained as 325.76 mL/g/VS. The total net energy gain of 3288.576 J/g/VS was obtained. The performance parameters were calculated by using different kinetic models. It followed the trend as modified Gompertz > transference function > logistic function models. Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) analysis confirmed the breakdown of lignocellulose structure resulting from the rupture of cuticular surface.


Assuntos
Metano , Oryza , Anaerobiose , Biocombustíveis , Cinética , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...