Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 267(5): 1331-1339, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31955244

RESUMO

BACKGROUND: We examined the influence of periprocedural blood pressure (BP), especially critical BP drops, on 3-month functional outcome in stroke patients undergoing mechanical thrombectomy (MT) under general anaesthesia (GA). METHODS: We screened all patients with anterior circulation large vessel occlusion receiving MT under GA at our centre from January 2011 to June 2016 and selected those who had continuous invasive periinterventional BP monitoring. Clinical and radiological data were prospectively collected as part of an ongoing cohort study, monitoring data were extracted from electronic anaesthesia records. We used uni- and multivariable regression to investigate the association of BP values with unfavourable outcome, defined as modified Rankin Scale scores 3-6 3 months post-stroke. RESULTS: 115 patients were included in this study (mean age 65.3 ± 13.0 years, 55.7% male). Periinterventional systolic, diastolic, and mean arterial BP (MAP) values averaged across MT had no effect on outcome. However, single BP drops were related to unfavourable outcome, with absolute MAP drops showing the highest association compared to both systolic and relative BP drops (with reference to pre-interventional values). The BP value with the strongest association with unfavourable outcome was identified as an MAP ever < 60 mmHg (p = 0.01) with a pronounced effect in patients with poor collaterals. An MAP < 60 mmHg remained independently associated with poor functional outcome in multivariable analysis (p < 0.01). CONCLUSIONS: For patients undergoing MT under GA, single MAP drops < 60 mmHg are independently related to unfavourable 3-month outcome. Therefore, every effort should be made to prevent periinterventional hypotensive episodes, especially below this threshold.


Assuntos
Anestesia Geral , Pressão Arterial/fisiologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Trombólise Mecânica/efeitos adversos , Avaliação de Resultados em Cuidados de Saúde , Adulto , Idoso , Idoso de 80 Anos ou mais , Determinação da Pressão Arterial , Estenose das Carótidas/complicações , Feminino , Seguimentos , Humanos , Infarto da Artéria Cerebral Média/complicações , AVC Isquêmico/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Phys Rev Lett ; 122(24): 244801, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322392

RESUMO

Many upcoming experiments in antimatter research require low-energy antiproton beams. With a kinetic energy in the order of 100 keV, the standard magnetic components to control and focus the beams become less effective. Therefore, electrostatic components are being developed and installed in transfer lines and storage rings. However, there is no equipment available to precisely map and check the electric field generated by these elements. Instead, one has to trust in simulations and, therefore, depend on tight fabrication tolerances. Here we present, for the first time, a noninvasive way to experimentally probe the electrostatic field in a 3D volume with a microsensor. Using the example of an electrostatic quadrupole focusing component, we find excellent agreement between a simulated and real field. Furthermore, it is shown that the spatial resolution of the probe is limited by the electric field curvature which is almost zero for the quadrupole. With a sensor resolution of 61 V/m/sqrt[Hz], the field deviation due to a noncompliance with the tolerances can be resolved. We anticipate that this compact and practical field strength probe will be relevant also for other scientific and technological disciplines such as atmospheric electricity or safeguarding near power infrastructure.

3.
Sensors (Basel) ; 19(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691030

RESUMO

Accurate knowledge of the spatial magnetic field distribution is necessary when measuring field gradients. Therefore, a MEMS magnetic field gradiometer is reported, consisting of two identical, but independent laterally oscillating masses on a single chip. The sensor is actuated by Lorentz force and read out by modulation of the light flux passing through stationary and moving arrays of the chip. This optical readout decouples the transducer from the electronic components. Both phase and intensity are recorded which reveals information about the uniformity of the magnetic field. The magnetic flux density is measured simultaneously at two points in space and the field gradient is evaluated locally. The sensor was characterised at ambient pressure by performing frequency and magnitude response measurements with coil and various different permanent magnet arrangements, resulting in a responsivity of 35.67 V/T and detection limit of 3.07 µT/ Hz (@ 83 Hz ENBW). The sensor is compact, offers a large dynamic measurement range and can be of low-cost by using conventional MEMS batch fabrication technology.

4.
Nat Electron ; 1: 68-73, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29485145

RESUMO

Small-scale and distortion-free measurement of electric fields is crucial for applications such as surveying atmospheric electrostatic fields, lightning research, and safeguarding areas close to high-voltage power lines. A variety of measurement systems exist, the most common of which are field mills, which work by picking up the differential voltage of the measurement electrodes while periodically shielding them with a grounded electrode. However, all current approaches are either bulky, suffer from a strong temperature dependency, or severely distort the electric field requiring a well-defined surrounding and complex calibration procedures. Here we show that microelectromechanical system (MEMS) devices can be used to measure electric field strength without significant field distortion. The purely passive MEMS devices exploit the effect of electrostatic induction, which is used to generate internal forces that are converted into an optically tracked mechanical displacement of a spring-suspended seismic mass. The devices exhibit resolutions on the order of [Formula: see text] with a measurement range of up to tens of kilovolt per metre in the quasi-static regime (≲ 300 Hz).We also show that it should be possible to achieve resolutions of around [Formula: see text] by fine-tuning of the sensor embodiment. These MEMS devices are compact and could easily be mass produced for wide application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...