Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(24): 5681-5691, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37314883

RESUMO

We present a comprehensive study of the exciton wave packet evolution in disordered lossless polaritonic wires. Our simulations reveal signatures of ballistic, diffusive, and subdiffusive exciton dynamics under strong light-matter coupling and identify the typical time scales associated with the transitions between these qualitatively distinct transport phenomena. We determine optimal truncations of the matter and radiation subsystems required for generating reliable time-dependent data from computational simulations at an affordable cost. The time evolution of the photonic part of the wave function reveals that many cavity modes contribute to the dynamics in a nontrivial fashion. Hence, a sizable number of photon modes is needed to describe exciton propagation with a reasonable accuracy. We find and discuss an intriguingly common lack of dominance of the photon mode on resonance with matter in both the presence and absence of disorder. We discuss the implications of our investigations for the development of theoretical models and analysis of experiments where coherent intermolecular energy transport and static disorder play an important role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA