Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38905002

RESUMO

Cell cultures are models in biological and medical research to understand physiological and pathological processes. Cell lines are not always available depending on cell type and required species. In addition, the immortalization process often affects cell biology. Primary cells generally maintain a greater degree of similarity in short-term culture to the cells in tissue. Goal of this study was to verify the suitability of chicken primary epithelial caecal cells (PECCs) for in vitro investigations of host‒pathogen interactions. Epithelial nature of PECCs was confirmed by detection of tight and adherens junctions and cobblestone-like cell morphology. Sialic acids distribution was similar to that in caecal cyrosections. To understand the capacity of PECCs to respond to microbial challenges, the Toll-like receptors (TLRs) repertoire was determined. Exposure of PECCs to polyinosinic-polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) led to upregulation of type I and III interferon (IFN) as well as interleukin (IL-) 1ß, IL-6 and IL-8 mRNA expression. Overall, the PECCs showed properties of polarized epithelial cells. The presence of TLRs, their differential expression, as well as pattern recognition receptor dependent immune responses enable PECCs to act as suitable in vitro model for host‒pathogen interaction studies, which are difficult to conduct under in vivo conditions.

2.
Biomolecules ; 13(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238673

RESUMO

The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N1-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, and deoxyhypusine synthase, fulfill common functions during infection in parasitic protozoa and viruses which are obligate, intracellular parasites. The competition for this important polyamine between the infected host cell and the pathogen determines the severity of infection in disabling human parasites and pathogenic viruses. Here, we review the impact of spermidine and its metabolites in disease development of the most important, pathogenic human viruses such as SARS-CoV-2, HIV, Ebola, and in the human parasites Plasmodium and Trypanosomes. Moreover, state-of-the-art translational approaches to manipulate spermidine metabolism in the host and the pathogen are discussed to accelerate drug development against these threatful, infectious human diseases.


Assuntos
COVID-19 , Doenças Parasitárias , Trypanosoma brucei brucei , Humanos , Espermidina , Trypanosoma brucei brucei/metabolismo , Plasmodium falciparum/metabolismo , SARS-CoV-2/metabolismo , Poliaminas/metabolismo
3.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838674

RESUMO

Environmental stimuli can distress the internal reaction of cells and their normal function. To react promptly to sudden environmental changes, a cascade of heat shock proteins (Hsps) functions to protect and act as housekeepers inside the cells. In parallel to the heat shock response, the metabolic polyamine (PA) status changes. Here, we discuss possible ways of putative interactions between Hsps and polyamines in a wide lineage of eukaryotic model organisms with a particular focus on parasitic protozoa such as Plasmodium falciparum (P. falciparum). The supposed interaction between polyamines and Hsps may protect the parasite from the sudden change in temperature during transmission from the female Anopheles mosquito to a human host. Recent experiments performed with the spermidine mimetic inhibitor 15-deoxyspergualine in Plasmodium in vitro cultures show that the drug binds to the C-terminal EEVD motif of Hsp70. This leads to inhibition of protein biosynthesis caused by prevention of eIF5A2 phosphorylation and eukaryotic initiation factor 5A (eIF5A) modification. These observations provide further evidence that PAs are involved in the regulation of protein biosynthesis of Hsps to achieve a protective effect for the parasite during transmission.


Assuntos
Proteínas de Choque Térmico , Malária Falciparum , Plasmodium , Poliaminas , Animais , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Malária Falciparum/parasitologia , Plasmodium/metabolismo , Plasmodium falciparum , Poliaminas/farmacologia , Espermidina/farmacologia
4.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458660

RESUMO

The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites' genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Plasmodium , Inibidores Enzimáticos/farmacologia , Humanos , Oxigenases de Função Mista/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/metabolismo , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologia
5.
Amino Acids ; 54(7): 1083-1099, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35243537

RESUMO

Hypusination is a unique two-step enzymatic post-translational modification of the Nε-amino group of lysine-50 of the eukaryotic initiation factor 5A (eIF5A). We developed a specific and sensitive gas chromatography-mass spectrometry (GC-MS) method for the measurement of biological hypusine (Hyp), i.e., Nε-(4-amino-2-hydroxybutyl)lysine. The method includes a two-step derivatization of Hyp: first esterification with 2 M HCl in CH3OH (60 min, 80 °C) to the methyl ester (Me) and then acylation with penta-fluoro-propionic (PFP) anhydride in ethyl acetate (30 min, 65 °C). Esterification with 2 M HCl in CD3OD was used to prepare the internal standard. The major derivatization product was identified as the un-labelled (d0Me) and the deuterium-labelled methyl esters (d3Me) derivatives: d0Me-Hyp-(PFP)5 and d3Me-Hyp-(PFP)5, respectively. Negative-ion chemical ionization generated the most intense ions with m/z 811 for d0Me-Hyp-(PFP)5 and m/z 814 for the internal standard d3Me-Hyp-(PFP)5. Selected-ion monitoring of m/z 811 and m/z 814 was used in quantitative analyses. Free Hyp was found in spot urine samples (10 µL) of two healthy subjects at 0.60 µM (0.29 µmol Hyp/mmol creatinine) in the female and 1.80 µM (0.19 µmol Hyp/mmol creatinine) in the male subject. The mean accuracy of the method in these urine samples spiked with 1-5 µM Hyp was 91-94%. The limit of detection (LOD) of the method is 1.4 fmol Hyp. The method was applied to measure the urinary excretion rates of Hyp in healthy black (n = 38, age 7.8 ± 0.7 years) and white (n = 41, age 7.7 ± 1.0 years) boys of the Arterial Stiffness in Offspring Study (ASOS). The Hyp concentrations were 3.55 [2.68-5.31] µM (range 0.54-9.84 µM) in the black boys and 3.87 [2.95-5.06] µM (range 1.0-11.7 µM) in the white boys (P = 0.64). The creatinine-corrected excretion rates were 0.25 [0.20-0.29] µmol/mmol (range 0.11-0.36 µmol/mmol) in the black boys and 0.26 [0.21-0.30] µmol/mmol (range 0.10-0.45 µmol/mmol) in the white boys (P = 0.82). These results suggest that there is no ethnic-related difference in the ASOS population in the eIF5A modification. Remarkable differences were found between black and white boys with respect to correlations of urinary Hyp with amino acids and advanced glycation end-products of Lys, Arg and Cys. Deoxyhypusine, formally the direct precursor of Hyp, seems not to be excreted in the urine by healthy subjects.


Assuntos
Lisina , Rigidez Vascular , Biomarcadores , Criança , Creatinina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Lisina/análogos & derivados , Lisina/química , Masculino , Fatores de Iniciação de Peptídeos/metabolismo
6.
Amino Acids ; 54(4): 501-511, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000000

RESUMO

Cancer drug resistance, in particular in advanced stages such as metastasis and invasion is an emerging problem. Moreover, drug resistance of parasites causing poverty-related diseases is an enormous, global challenge for drug development in the future. To circumvent this problem of increasing resistance, the development of either novel small compounds or Advanced Medicinal Therapies have to be fostered. Polyamines have many fundamental cellular functions like DNA stabilization, protein translation, ion channel regulation, autophagy, apoptosis and mostly important, cell proliferation. Consequently, many antiproliferative drugs can be commonly administered either in cancer therapy or for the treatment of pathogenic parasites. Most important for cell proliferation is the triamine spermidine, since it is an important substrate in the biosynthesis of the posttranslational modification hypusine in eukaryotic initiation factor 5A (EIF5A). To date, no small compound has been identified that directly inhibits the precursor protein EIF5A. Moreover, only a few small molecule inhibitors of the two biosynthetic enzymes, i.e. deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) have been functionally characterized. However, it is evident that only some of the compounds have been applied in translational approaches, i.e. in murine models to analyze the function of this modified protein in cell proliferation. In recent years, the pharmaceutical industry shifted from small molecules beyond traditional pharmacology to new tools and methods to treat disorders involving signaling deregulation. In this review, we evaluate translational approaches on inhibition of EIF5A hypusination in pathogenic parasites and therapy-resistant tumors and discuss its feasibility for an application in Advanced Medicinal Therapies.


Assuntos
Neoplasias , Parasitos , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Parasitos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espermidina/metabolismo
8.
Amino Acids ; 52(5): 693-710, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367435

RESUMO

In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.


Assuntos
Apoptose , Malária/patologia , Miócitos Cardíacos/patologia , Parasitemia/patologia , Fatores de Iniciação de Peptídeos/metabolismo , Plasmodium berghei/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Malária/metabolismo , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
9.
Oncotarget ; 10(1): 17-29, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713600

RESUMO

BACKGROUND: Neuroendocrine carcinomas of the prostate (NEPCs) are rare tumors with poor prognosis. While platinum and etoposide-based chemotherapy regimens (PE) are commonly applied in first-line for advanced disease, evidence for second-line therapy and beyond is very limited. METHODS: Retrospective analysis of all patients with NEPCs including mixed differentiation with adenocarcinoma component and well differentiated neuroendocrine tumors (NETs, carcinoids) at two high-volume oncological centers between 12/2000 and 11/2017. RESULTS: Of 46 identified patients 39.1 % had a prior diagnosis of prostatic adenocarcinoma only, 43.5 % had a mixed differentiation at NEPC diagnosis, 67.4 % developed visceral metastases, 10.9 % showed paraneoplastic syndromes. Overall survival (OS) from NEPC diagnosis was 15.5 months, and significantly shorter in patients with a prior prostatic adenocarcinoma (5.4 vs. 32.7 months, p=0.005). 34 patients received palliative first-line systemic therapy with a median progression-free survival (PFS) of 6.6 months, mostly PE. Overall response rate (ORR) for PE was 48.1 %. 19 patients received second-line therapy, mostly with poor responses. Active regimens were topotecan (1 PR, 3 PD), enzalutamide (1 SD), abiraterone (1 SD), FOLFIRI (1 SD), and ipilimumab+nivolumab (1 PR). One patient with prostatic carcinoid was sequentially treated with octreotide, peptide receptor radionuclide therapy and everolimus, and survived for over 9 years. CONCLUSIONS: EP in first-line shows notable ORR, however limited PFS. For second-line therapy, topotecan, FOLFIRI, enzalutamide, abiraterone and immune checkpoint blockade are treatment options. Prostatic carcinoids can be treated in analogy to well differentiated gastrointestinal NETs.

10.
Int J Mol Sci ; 20(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609697

RESUMO

Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.


Assuntos
Antiprotozoários/farmacologia , Apicomplexa/efeitos dos fármacos , Infecções por Euglenozoa/tratamento farmacológico , Kinetoplastida/efeitos dos fármacos , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Apicomplexa/metabolismo , Humanos , Kinetoplastida/metabolismo
11.
Avian Dis ; 61(2): 229-236, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28665724

RESUMO

The role of intestinal epithelial cells (IECs) in the physiology of the gastrointestinal tract (GIT) of chickens and pathogenesis of various diseases in chickens is still poorly understood. IECs line the GIT and represent the border between the unsterile environment and the sterile internal tissues. Bacterial, viral, fungal, or parasitic pathogens are able to invade or pass IECs under certain circumstances and cause various diseases. Pathogen-host interactions in the chicken gut are poorly understood because of the lack of suitable in vitro and ex vivo models. In this context, there is a need to optimize the cell isolation and culture conditions to be able to provide reproducible IEC cultures with defined epithelial characteristics. We compared different mechanical IEC isolation protocols and cell culture media and established a reproducible primary intestinal epithelial cell culture model from specific-pathogen-free layer-type chickens. By using isolated crypts from the duodenum of 5- to 12-wk-old birds to create the starting material, we were able to culture replicating cells between 7 and 10 days. Cells built an almost closed monolayer and showed epithelial-like characteristics, such as the expression of cytokeratin and epithelial cadherin. The primary IEC cultures described in this study represent a suitable model with which to investigate in vitro pathogen-host interactions relevant to the chicken gut.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Intestinos/citologia , Animais , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Galinhas
13.
Virus Res ; 225: 50-63, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27596739

RESUMO

Avian influenza virus (AIV) and Newcastle disease virus (NDV) share a high tropism for the avian respiratory epithelium and may cause severe clinical disease associated with high mortality. Both viruses have different pathotypes, which may lead to differences in the severity of the disease. Respiratory epithelial cells were shown to be the primary target cells for infection and replication. Nevertheless, intestinal epithelial cells (IECs) were also suggested as target cells for both viruses in avian species. Most studies on AIV and NDV focused on the respiratory tract, while information regarding the virus-host interaction at the intestinal epithelial cell interface is lacking. We established a primary chicken IEC culture model. Primary chicken embryo fibroblast cultures (CEFs) were used for comparison. IECs and CEFs were infected with a low infectious dose (LID; multiplicity of infection, MOI, of 0.01) or high infectious dose (HID, MOI of 1), of low pathogenic AIV (LPAIV) H9N2 or velogenic viscerotropic NDV (vvNDV) Herts 33/56. Virus replication, mRNA expression pattern of the type I and type III interferon (IFN) and related genes IFIT5 (interferon-induced protein with tetratricopeptide repeats 5) and ISG12 (interferon stimulated gene 12) were investigated at four, 16, and 24h post infection (hpi). The results suggest high susceptibility of primary chicken IECs for these AIV and NDV strains. Replication rates and expression pattern of IFNs as well as related genes differed between the infecting viruses as well as cell culture systems. Both viruses induced an IFN λ-increase of more than 30-fold in IECs, while IFN-α and IFN-ß mRNA expression was either downregulated or only slightly increased with up to 10fold changes for the latter at 24h post LPAIV-infection. These results suggest a possible role of IFN λ in the control of viruses at the gut epithelial surface. LPAIV induced upregulation of IFIT5 as well as ISG12 expression in a dose and time dependent manner, while vvNDV infection only led to slight upregulation of IFIT5 and downregulation of ISG12, indicating differences in the down-stream regulation of the antiviral immune response between investigated viruses. Overall, our data demonstrate that IECs are a suitable model to investigate selected parameters of virus-host interaction for AIV and NDV and may be used to study other strains as well as other host species.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A/fisiologia , Mucosa Intestinal/virologia , Vírus da Doença de Newcastle/fisiologia , Animais , Galinhas , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Fibroblastos , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Influenza Aviária/virologia , Interferons/genética , Interferons/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Doença de Newcastle/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Replicação Viral
14.
FEBS Open Bio ; 6(8): 860-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27516964

RESUMO

The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, suggesting its biological relevance in a variety of biological processes. Hypusinated eIF-5A controls the proliferation of cancer cells and inflammatory processes in malaria. It was shown that pharmacological inhibition of the enzymes involved in this pathway, deoxyhypusine synthase (DHS) and the deoxyhypusine hydroxylase (DOHH), arrested the growth of malaria parasites. Down-regulation of both the malarial eIF-5A and dhs genes by in vitro and in vivo silencing led to decreased transcript levels and protein expression and, in turn, to low parasitemia, confirming a critical role of hypusination in eIF-5A for proliferation in Plasmodium. To further investigate whether eIF-5A and the activating enzyme DHS are essential for Plasmodium erythrocytic stages, targeted gene disruption was performed in the rodent malaria parasite Plasmodium berghei. Full disruption of both genes was not successful; instead parasites harboring the episome for eIF-5A and dhs genes were obtained, suggesting that these genes may perform vital functions during the pathogenic blood cell stage. Next, a knock-in strategy was pursued for both endogenous genes eIF-5A and dhs from P. berghei. The latter resulted in viable recombinant parasites, strengthening the observation that they might be essential for proliferation during asexual development of the malaria parasite.

15.
PLoS One ; 10(11): e0140994, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540393

RESUMO

During its development the malaria parasite P. falciparum has to adapt to various different environmental contexts. Key cellular mechanisms involving G-protein coupled signal transduction chains are assumed to act at these interfaces. Heterotrimeric G-proteins are absent in Plasmodium. We here describe the first cloning and expression of a putative, non-canonical Ras-like G protein (acronym PfG) from Plasmodium. PfG reveals an open reading frame of 2736 bp encoding a protein of 912 amino acids with a theoretical pI of 8.68 and a molecular weight of 108.57 kDa. Transcript levels and expression are significantly increased in the erythrocytic phase in particular during schizont and gametocyte formation. Most notably, PfG has GTP binding capacity and GTPase activity due to an EngA2 domain present in small Ras-like GTPases in a variety of Bacillus species and Mycobacteria. By contrast, plasmodial PfG is divergent from any human alpha-subunit. PfG was expressed in E. coli as a histidine-tagged fusion protein and was stable only for 3.5 hours. Purification was only possible under native conditions by Nickel-chelate chromatography and subsequent separation by Blue Native PAGE. Binding of a fluorescent GTP analogue BODIPY® FL guanosine 5'O-(thiotriphosphate) was determined by fluorescence emission. Mastoparan stimulated GTP binding in the presence of Mg2+. GTPase activity was determined colorimetrically. Activity expressed as absolute fluorescence was 50% higher for the human paralogue than the activity of the parasitic enzyme. The PfG protein is expressed in the erythrocytic stages and binds GTP after immunoprecipitation. Immunofluorescence using specific antiserum suggests that PfG localizes to the parasite cytosol. The current data suggest that the putitative, Ras-like G-protein might be involved in a non-canonical signaling pathway in Plasmodium. Research on the function of PfG with respect to pathogenesis and antimalarial chemotherapy is currently under way.


Assuntos
GTP Fosfo-Hidrolases/genética , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , GTP Fosfo-Hidrolases/fisiologia , Expressão Gênica , Immunoblotting , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Plasmodium falciparum/genética , RNA de Protozoário/genética , Esquizontes/metabolismo , Alinhamento de Sequência , Proteínas ras/genética , Proteínas ras/fisiologia
16.
Amino Acids ; 47(6): 1155-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25715757

RESUMO

Deoxyhypusine hydroxylase (DOHH) is a dinuclear iron enzyme required for hydroxylation of the aminobutyl side chain of deoxyhypusine in eukaryotic translation initiation factor 5A (eIF-5A), the second step in hypusine biosynthesis. DOHH has been recently identified in P. falciparum and P. vivax. Both enzymes have very peculiar features including E-Z type HEAT-like repeats and a diiron centre in their active site. Both proteins share only 26 % amino acid identity to the human paralogue. Hitherto, no X-ray structure exists from either enzyme. However, structural predictions based on the amino acid sequence of the active site in comparison to the human enzyme show that four conserved histidine and glutamate residues provide the coordination sites for chelating the ferrous iron ions. Recently, we showed that P. vivax DOHH is inhibited by zileuton (N-[1-(1-benzothien-2-yl)ethyl]-N-hydroxyurea), a drug that is known for inhibiting human 5-lipoygenase (5-LOX) by the complexation of ferrous iron. A novel discovery program was launched to identify inhibitors of the P. falciparum DOHH from the Malaria Box, consisting of 400 chemical compounds, which are highly active in the erythrocytic stages of Malaria infections. In a first visual selection for potential ligands of ferrous iron, three compounds from different scaffold classes namely the diazonapthyl benzimidazole MMV666023 (Malaria Box plate A, position A03), the bis-benzimidazole MMV007384 (plate A, position B08), and a 1,2,5,-oxadiazole MMV665805 (plate A, position C03) were selected and subsequently evaluated in silico for their potential to complex iron ions. As a proof of principle, a bioanalytical assay was performed and the inhibition of hypusine biosynthesis was determined by GC-MS. All tested compounds proved to be active in this assay and MMV665805 exhibited the strongest inhibitory effect. Notably, the results were in accordance with the preliminary quantum-mechanical calculations suggesting the strongest iron complexation capacity for MMV665805. This compound might be a useful tool as well as a novel lead structure for inhibitors of P. falciparum DOHH.


Assuntos
Antimaláricos , Inibidores Enzimáticos , Quelantes de Ferro , Oxigenases de Função Mista/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia
17.
J Perinat Med ; 43(2): 177-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25395596

RESUMO

AIMS: Regional and interinstitutional variations have been recognized in the increasing incidence of caesarean section. Modes of birth after previous caesarean section vary widely, ranging from elective repeat caesarean section (ERCS) and unplanned repeat caesarean section (URCS) after trial of labour to vaginal birth after caesarean section (VBAC). This study describes interinstitutional variations in mode of birth after previous caesarean section in relation to regional indicators in Germany. MATERIAL AND METHODS: A cross-sectional study using the birth registers of six maternity units (n=12,060) in five different German states (n=370,209). Indicators were tested by χ2 and relative deviations from regional values were expressed as relative risks and 95% confidence intervals. RESULTS: The percentages of women in the six units with previous caesarean section ranged from 11.9% to 15.9% (P=0.002). VBAC was planned for 36.0% to 49.8% (P=0.003) of these women, but actually completed in only 26.2% to 32.8% (P=0.66). Depending on the indicator, the units studied deviated from the regional data by up to 32% [relative risk 0.68 (0.47-0.97)] in respect of completed VBAC among all initiated VBAC. CONCLUSIONS: There is substantial interinstitutional variation in mode of birth following previous caesarean section. This variation is in addition to regional patterns.


Assuntos
Recesariana/estatística & dados numéricos , Nascimento Vaginal Após Cesárea/estatística & dados numéricos , Estudos Transversais , Feminino , Alemanha , Humanos , Gravidez
18.
Bioorg Med Chem ; 22(15): 4338-46, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909679

RESUMO

East Coast fever (ECF) is a tick-borne disease caused by the parasite Theileria parva which infects cattle. In Sub-Saharan Africa it leads to enormous economic costs. After a bite of a tick, sporozoites invade the host lymphocytes and develop into schizonts. At this stage the parasite transforms host lymphocytes resulting in the clonal expansion of infected lymphocytes. Animals develop a lymphoma like disorder after infection which is rapidly fatal. Hitherto, a few drugs of the quinone type can cure the disease. However, therapy can only be successful after early diagnosis. The genera Theileria and Plasmodium, which includes the causative agent of human malaria, are closely related apicomplexan parasites. Enzymes of the hypusine pathway, a posttranslational modification in eukaryotic initiation factor EIF-5A, have shown to be druggable targets in Plasmodium. We identified the first enzyme of the hypusine pathway from T. parva, the deoxyhypusine synthase (DHS), which is located on chromosome 2 of the Muguga strain. Transcription is significantly increased in schizonts. The expressed T. parva DHS reveals an open reading frame (ORF) of 370 amino acids after expression in Escherichia coli Rosetta cells with a molecular size of 41.26 kDa and a theoretical pI of 5.26. Screening of the Malaria Box which consists of 400 active compounds resulted in a novel heterocyclic compound with a guanyl spacer which reduced the activity of T. parva DHS to 45%. In sum, the guanyl residue seems to be an important lead structure for inhibition of Theileria DHS. Currently, more different guanyl analogues from the Malaria Box are tested in inhibitor experiments to determine their efficacy.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Plasmodium/enzimologia , Theileria parva/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Guanina/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Humanos , Cinética , Linfócitos/parasitologia , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Theileria parva/genética
19.
Curr Pharm Des ; 20(2): 278-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23701540

RESUMO

RNA interference (RNAi) has quickly proven to be an immensely useful tool for studying gene function and validation of potential drug targets in almost all organisms that possess the required set of proteins of the interference pathway. In protozoan parasites like Plasmodium, Toxoplasma, Entamoeba, Giardia, Trypanosoma, and Leishmania, this set of enzymes is represented divergently. Hitherto, no RNAi-related genes like Dicer and Argonaute have been identified in Plasmodium and Leishmania species, respectively. However, non-canonical RNAi-related pathways might be present in both parasites, as it has been recently demonstrated in Plasmodium. In this review, we discuss existing challenges and future directions for developing RNAi as a tool for studying gene function and as a possible clinical application against Plasmodium.


Assuntos
Plasmodium/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Antimaláricos/farmacologia , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular
20.
Amino Acids ; 45(5): 1047-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23943044

RESUMO

A first approach to discover new antimalarials has been recently performed in a combined approach with data from GlaxoSmithKline Tres Cantos Antimalarial Set, Novartis-GNF Malaria Box Data set and St. Jude Children's Research Hospital. These data are assembled in the Malaria Box. In a first phenotypic forward chemical genetic approach, 400 chemicals were employed to eradicate the parasite in the erythrocytic stages. The advantage of phenotypic screens for the identification of novel chemotypes is that no a priori assumptions are made concerning a fixed target and that active compounds inherently have cellular bioavailability. In a first screen 40 mostly heterocyclic, highly active compounds (in nmol range of growth inhibition) were identified with EC50 values ≤2 µM against chloroquine-resistant Plasmodium falciparum strains and a therapeutic window ≥10 against two mammalian cell lines. 78 % of the compounds had no violations with the Lipinski Rule of 5 and only 1 % of the compounds showed cytotoxicity when applied at concentrations of 10 µM. This pre-selective step of parasitic eradication will be used further for a test of the Malaria Box with a potential in iron chelating capacity to inhibit deoxyhypusine hydroxylase (DOHH) from P. falciparum and vivax. DOHH, a metalloprotein which consists of ferrous iron and catalyzes the second step of the posttranslational modification at a specific lysine in eukaryotic initiation factor 5A (EIF-5A) to hypusine. Hypusine is a novel, non-proteinogenic amino acid, which is essential in eukaryotes and for parasitic proliferation. DOHH seems to be a "druggable" target, since it has only 26 % amino acid identity to its human orthologue. For a High-throughput Screening (HTS) of DOOH inhibitors, rapid and robust analytical tools are a prerequisite. A proteomic platform for the detection of hypusine metabolites is currently established. Ultra performance Liquid Chromatography enables the detection of hypusine metabolites with retention times of 7.4 min for deoxyhypusine and 7.3 min for hypusine. Alternatively, the analytes can be detected by their masses with gas chromatography/mass spectrometry or one-dimensional chromatography coupled to mass spectrometry. Moreover, the identified hits will be tracked further to test their efficacy in novel "in vitro assays". Subsequently in vivo inhibition in a humanized mouse model will be tested.


Assuntos
Antimaláricos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Malária/tratamento farmacológico , Oxigenases de Função Mista/antagonistas & inibidores , Animais , Humanos , Malária/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...