Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38006048

RESUMO

In mammals, the role of interleukin-18 (IL-18) in the immune response is to drive inflammatory and, normally therefore, anti-viral responses. IL-18 also shows promise as a vaccine adjuvant in mammals. Chicken IL-18 (chIL-18) has been cloned. The aim of this study was to investigate the potential of chIL-18 to act as a vaccine adjuvant in the context of a live recombinant Fowlpox virus vaccine (fpIBD1) against Infectious bursal disease virus (IBDV). fpIBD1 protects against mortality, but not against damage to the bursa of Fabricius caused by IBDV infection. The Fowlpox virus genome itself contains several candidate immunomodulatory genes, including potential IL-18 binding proteins (IL-18bp). We knocked out (Δ) the potential IL-18bp genes in fpIBD1 and inserted (::) the cDNA encoding chIL-18 into fpIBD1 in the non-essential ORF030, generating five new viral constructs -fpIBD1::chIL-18, fpIBD1ΔORF073, fpIBD1ΔORF073::chIL-18, fpIBD1ΔORF214, and fpIBD1ΔORF214::chIL-18. The subsequent protection from challenge with virulent IBDV, as measured by viral load and bursal damage, given by these altered fpIBD1 strains, was compared to that given by the original fpIBD1. Complete protection was provided following challenge with IBDV in chicken groups vaccinated with either fpIBDIΔ073::IL-18 or fpIBD1Δ214::IL-18, as no bursal damage nor IBDV was detected in the bursae of the birds. The results show that chIL-18 can act as an effective vaccine adjuvant by improving the fpIBD1 vaccine and providing complete protection against IBDV challenge.

2.
Pathogens ; 11(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422592

RESUMO

Despite the successful control of highly contagious tumorigenic Marek's disease (MD) by vaccination, a continuous increase in MD virus (MDV) virulence over recent decades has put emphasis on the development of more MD-resistant chickens. The cell types and genes involved in resistance therefore need to be recognized. The virus is primarily lymphotropic, but research should also focus on innate immunity, as innate immune cells are among the first to encounter MDV. Our previous study on MDV-macrophage interaction revealed significant differences between MHC-congenic lines 61 (MD-resistant) and 72 (MD-susceptible). To investigate the role of dendritic cells (DCs) in MD resistance, bone-marrow-derived DCs from these lines were infected with MDV in vitro. They were then characterized by cell sorting, and the respective transcriptomes analysed by RNA-seq. The differential expression (DE) of genes revealed a strong immune activation in DCs of the susceptible line, although an inherent immune supremacy was shown by the resistant line, including a significant expression of tumour-suppressor miRNA, gga-mir-124a, in line 61 control birds. Enrichment analysis of DE genes revealed high expression of an oncogenic transcription factor, AP-1, in the susceptible line following MDV challenge. This research highlights genes and pathways that may play a role in DCs in determining resistance or susceptibility to MDV infection.

3.
Immunology ; 165(2): 171-194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767637

RESUMO

Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Anticorpos Monoclonais , Biomarcadores , Técnicas de Cultura de Células , Galinhas , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Receptores Acoplados a Proteínas G/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
4.
Poult Sci ; 101(2): 101605, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936953

RESUMO

Salmonella enterica serovar Enteritidis is a bacterial pathogen that contributes to poultry production losses and human foodborne illness. The bacterium elicits a broad immune response involving both the innate and adaptive components of the immune system. Coordination of the immune response is largely directed by cytokines. The objective of the current study was to characterize the expression of a select set of cytokines and regulatory immune genes in three genetically diverse chicken lines after infection with S. Enteritidis. Leghorn, Fayoumi and broiler day-old chicks were orally infected with pathogenic S. Enteritidis or culture medium. At 2 and 18 h postinfection, spleens and ceca were collected and mRNA expression levels for 7 genes (GM-CSF, IL2, IL15, TGF-ß1, SOCS3, P20K, and MHC class IIß) were evaluated by real-time quantitative PCR. Genetic line had a significant effect on mRNA expression levels of IL15, TGF-ß1, SOCS3 and P20K in the spleen and on P20K and MHC class IIß in the cecum. Comparing challenged vs. unchallenged birds, the expression of SOCS3 and P20K mRNA were significantly higher in the spleen and cecum, while MHC class IIß mRNA was significantly lower in spleen. Combining the current RNA expression results with those of previously reported studies on the same samples reveals distinct RNA expression profiles among the three genetic chicken lines and the 2 tissues. This study illustrates that these diverse genetic lines have distinctively different immune response to S. Enteritidis challenge within the spleen and the cecum.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Ceco , Galinhas/genética , Doenças das Aves Domésticas/genética , RNA Mensageiro/genética , Salmonelose Animal/genética , Salmonella enteritidis
5.
Front Immunol ; 12: 653085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841436

RESUMO

Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.


Assuntos
Galinhas/imunologia , Coccidiose/veterinária , Suscetibilidade a Doenças/imunologia , Eimeria/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/patologia , Regulação da Expressão Gênica/imunologia , Interferon gama/genética , Interleucina-10/genética , Interleucinas/genética , Jejuno/imunologia , Jejuno/parasitologia , Jejuno/patologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/patologia , RNA-Seq
6.
Sci Rep ; 11(1): 1623, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436657

RESUMO

Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter. We associated high-density genome-wide genotypes (600K single nucleotide polymorphisms) of 3000 commercial broilers with Campylobacter load in their caeca. Trait heritability was modest but significant (h2 = 0.11 ± 0.03). Results confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified in inbred chicken lines, and detected two additional QTLs on chromosomes 19 and 26. RNA-Seq analysis of broilers at the extremes of colonisation phenotype identified differentially transcribed genes within the QTL on chromosome 16 and proximal to the major histocompatibility complex (MHC) locus. We identified strong cis-QTLs located within MHC suggesting the presence of cis-acting variation in MHC class I and II and BG genes. Pathway and network analyses implicated cooperative functional pathways and networks in colonisation, including those related to antigen presentation, innate and adaptive immune responses, calcium, and renin-angiotensin signalling. While co-selection for enhanced resistance and other breeding goals is feasible, the frequency of resistance-associated alleles was high in the population studied and non-genetic factors significantly influenced Campylobacter colonisation.


Assuntos
Campylobacter/fisiologia , Galinhas/genética , Resistência à Doença/genética , Característica Quantitativa Herdável , Transcriptoma , Imunidade Adaptativa/genética , Animais , Estudo de Associação Genômica Ampla , Genótipo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Inata/genética , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/microbiologia
8.
Dev Comp Immunol ; 105: 103586, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31870792

RESUMO

Macrophage colony-stimulating factor (CSF1) is an essential growth factor to control the proliferation, differentiation and survival of cells of the macrophage lineage in vertebrates. We have previously produced a recombinant chicken CSF1-Fc fusion protein and administrated it to birds which produced a substantial expansion of tissue macrophage populations. To further study the biology of CSF1 in the chicken, here we generated anti-chicken CSF1 antibodies (ROS-AV181 and 183) using CSF1-Fc as an immunogen. The specific binding of each monoclonal antibody was confirmed by ELISA, Western blotting and immunohistochemistry on tissue sections. Using the anti-CSF1 antibodies, we show that chicken bone marrow derived macrophages (BMDM) express CSF1 on their surface, and that the level appears to be regulated further by exogenous CSF1. By capture ELISA circulating CSF1 levels increased transiently in both layer and broiler embryos around the day of hatch. The levels of CSF1 in broilers was higher than in layers during the first week after hatch. Antibody ROS-AV183 was able to block CSF1 biological activity in vitro and treatment of hatchlings using this neutralising antibody in vivo impacted on some tissue macrophage populations, but not blood monocytes. After anti-CSF1 treatment, CSF1R-transgene reporter expressing cells were reduced in the bursa of Fabricius and cecal tonsil and TIM4+ Kupffer cells in the liver were almost completely ablated. Anti-CSF1 treatment also produced a reduction in overall bone density, trabecular volume and TRAP+ osteoclasts. Our novel neutralising antibody provides a new tool to study the roles of CSF1 in birds.


Assuntos
Anticorpos Bloqueadores/isolamento & purificação , Anticorpos/isolamento & purificação , Proteínas Aviárias/genética , Bolsa de Fabricius/metabolismo , Galinhas/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/fisiologia , Animais , Proteínas Aviárias/metabolismo , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Fragmentos Fc das Imunoglobulinas/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Recombinantes de Fusão/genética
9.
PLoS One ; 14(12): e0225658, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31794562

RESUMO

To address the need for sensitive high-throughput assays to analyse avian innate and adaptive immune responses, we developed and validated a highly multiplexed qPCR 96.96 Fluidigm Dynamic Array to analyse the transcription of chicken immune-related genes. This microfluidic system permits the simultaneous analysis of expression of 96 transcripts in 96 samples in 6 nanolitre reactions and the 9,216 reactions are ready for interpretation immediately. A panel of 89 genes was selected from an RNA-seq analysis of the transcriptional response of chicken macrophages, dendritic cells and heterophils to agonists of innate immunity and from published transcriptome data. Assays were confirmed to be highly specific by amplicon sequencing and melting curve analysis and the reverse transcription and preamplification steps were optimised. The array was applied to RNA of various tissues from a commercial line of broiler chickens housed at two different levels of biosecurity. Gut-associated lymphoid tissues, bursa, spleen and peripheral blood leukocytes were isolated and transcript levels for immune-related genes were defined. The results identified blood cells as a potentially reliable indicator of immune responses among all the tissues tested with the highest number of genes significantly differentially transcribed between birds housed under varying biosecurity levels. Conventional qPCR analysis of three differentially transcribed genes confirmed the results from the multiplex qPCR array. A highly multiplexed qPCR-based platform for evaluation of chicken immune responses has been optimised and validated using samples from commercial chickens. Apart from applications in selective breeding programmes, the array could be used to analyse the complex interplay between the avian immune system and pathogens by including pathogen-specific probes, to screen vaccine responses, and as a predictive tool for immune robustness.


Assuntos
Galinhas/imunologia , Ensaios de Triagem em Larga Escala/métodos , Interações Hospedeiro-Patógeno/imunologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Cruzamento/métodos , Galinhas/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Humoral/genética , Imunidade Inata/genética , Leucócitos/imunologia , Técnicas Analíticas Microfluídicas/métodos , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , RNA-Seq , Vacinas/administração & dosagem , Vacinas/imunologia
10.
Genes (Basel) ; 10(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678299

RESUMO

Despite successful control by vaccination, Marek's disease (MD) has continued evolving to greater virulence over recent years. To control MD, selection and breeding of MD-resistant chickens might be a suitable option. MHC-congenic inbred chicken lines, 61 and 72, are highly resistant and susceptible to MD, respectively, but the cellular and genetic basis for these phenotypes is unknown. Marek's disease virus (MDV) infects macrophages, B-cells, and activated T-cells in vivo. This study investigates the cellular basis of resistance to MD in vitro with the hypothesis that resistance is determined by cells active during the innate immune response. Chicken bone marrow-derived macrophages from lines 61 and 72 were infected with MDV in vitro. Flow cytometry showed that a higher percentage of macrophages were infected in line 72 than in line 61. A transcriptomic study followed by in silico functional analysis of differentially expressed genes was then carried out between the two lines pre- and post-infection. Analysis supports the hypothesis that macrophages from susceptible and resistant chicken lines display a marked difference in their transcriptome following MDV infection. Resistance to infection, differential activation of biological pathways, and suppression of oncogenic potential are among host defense strategies identified in macrophages from resistant chickens.


Assuntos
Resistência à Doença/genética , Macrófagos/metabolismo , Doença de Marek/imunologia , Transcriptoma , Animais , Células Cultivadas , Embrião de Galinha , Doença de Marek/genética , Aves Domésticas/genética , Aves Domésticas/imunologia
11.
J Immunol ; 202(4): 1186-1199, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626692

RESUMO

The phosphatidylserine receptor TIM4, encoded by TIMD4, mediates the phagocytic uptake of apoptotic cells. We applied anti-chicken TIM4 mAbs in combination with CSF1R reporter transgenes to dissect the function of TIM4 in the chick (Gallus gallus). During development in ovo, TIM4 was present on the large majority of macrophages, but expression became more heterogeneous posthatch. Blood monocytes expressed KUL01, class II MHC, and CSF1R-mApple uniformly. Around 50% of monocytes were positive for surface TIM4. They also expressed many other monocyte-specific transcripts at a higher level than TIM4- monocytes. In liver, highly phagocytic TIM4hi cells shared many transcripts with mammalian Kupffer cells and were associated with uptake of apoptotic cells. Although they expressed CSF1R mRNA, Kupffer cells did not express the CSF1R-mApple transgene, suggesting that additional CSF1R transcriptional regulatory elements are required by these cells. By contrast, CSF1R-mApple was detected in liver TIM4lo and TIM4- cells, which were not phagocytic and were more abundant than Kupffer cells. These cells expressed CSF1R alongside high levels of FLT3, MHCII, XCR1, and other markers associated with conventional dendritic cells in mice. In bursa, TIM4 was present on the cell surface of two populations. Like Kupffer cells, bursal TIM4hi phagocytes coexpressed many receptors involved in apoptotic cell recognition. TIM4lo cells appear to be a subpopulation of bursal B cells. In overview, TIM4 is associated with phagocytes that eliminate apoptotic cells in the chick. In the liver, TIM4 and CSF1R reporters distinguished Kupffer cells from an abundant population of dendritic cell-like cells.


Assuntos
Fagócitos/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Galinhas , Receptores de Superfície Celular/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
12.
Front Immunol ; 10: 3055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998322

RESUMO

Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in chickens, commonly termed colibacillosis. Early immune responses after initial infection are highly important for the outcome of the infection. In this study, the early interactions between GFP-expressing APEC strains of serotypes O1:K1:H7 and O2:K1:H5 and phagocytic cells in the lung of CSF1R-reporter transgenic chickens were investigated. CSF1R-reporter transgenic chickens express fluorescent protein under the control of elements of the CSF1R promoter and enhancer, such that cells of the myeloid lineage can be visualized in situ and sorted. Chickens were separately inoculated with APEC strains expressing GFP and culled 6 h post-infection. Flow cytometric analysis was performed to phenotype and sort the cells that harbored bacteria in the lung, and the response of the sorted cells was defined by transcriptomic analysis. Both APEC strains were mainly detected in CSF1R-transgeneneg (CSF1R-tgneg) and CSF1R-tglow MHC IIneg MRC1L-Bneg cells and low numbers of APEC were detected in CSF1R-tghigh MHC IIpos MRC1L-Bpos cells. Transcriptomic and flow cytometric analysis identified the APECposCSF1R-tgneg and CSF1R-tglow cells as heterophils and the APECposCSF1R-tghigh cells as macrophages and dendritic cells. Both APEC strains induced strong inflammatory responses, however in both CSF1R-tgneg/low and CSF1R-tghigh cells, many immune related pathways were repressed to a greater extent or less activated in birds inoculated with APEC O2-GFP compared to APEC O1-GFP inoculated birds. Comparison of the immune pathways revealed the aryl hydrocarbon receptor (AhR) pathway, IL17 and STAT3 signaling, heterophil recruitment pathways and the acute phase response, are modulated particularly post-APEC O2-GFP inoculation. In contrast to in vivo data, APEC O2-GFP was more invasive in CSF1R-tghigh cells in vitro than APEC O1-GFP and had higher survival rates for up to 6 h post-infection. Our data indicate significant differences in the responses induced by APEC strains of prevalent serotypes, with important implications for the design and interpretation of future studies. Moreover, we show that bacterial invasion and survival in phagocyte populations in vitro is not predictive of events in the chicken lung.


Assuntos
Galinhas/imunologia , Escherichia coli/imunologia , Granulócitos/imunologia , Imunomodulação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Animais , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/microbiologia , Galinhas/microbiologia , Infecções por Escherichia coli/imunologia , Granulócitos/microbiologia , Pulmão/microbiologia , Macrófagos/microbiologia , Fagócitos/imunologia , Fagócitos/microbiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Transdução de Sinais/imunologia , Virulência/imunologia , Fatores de Virulência/imunologia
13.
Avian Pathol ; 48(2): 157-167, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30570345

RESUMO

Avian pathogenic E. coli (APEC) cause severe respiratory and systemic disease. To address the genetic and immunological basis of resistance, inbred chicken lines were used to establish a model of differential resistance to APEC, using strain O1 of serotype O1:K1:H7. Inbred lines 72, 15I and C.B12 and the outbred line Novogen Brown were inoculated via the airsac with a high dose (107 colony-forming units, CFU) or low dose (105 CFU) of APEC O1. Clinical signs, colibacillosis lesion score and bacterial colonization of tissues after high dose challenge were significantly higher in line 15I and C.B12 birds. The majority of the 15I and C.B12 birds succumbed to the infection by 14 h post-infection, whilst none of the line 72 and the Novogen Brown birds developed clinical signs. No difference was observed after low dose challenge. In a repeat study, inbred lines 72 and 15I were inoculated with low, intermediate or high doses of APEC O1 ranging from 105 to 107 CFU. The colonization of lung was highest in line 15I after high dose challenge and birds developed clinical signs; however, colonization of blood and spleen, clinical signs and lesion score were not different between lines. No difference was observed after intermediate or low dose challenge. Ex vivo, the phagocytic and bactericidal activity of lung leukocytes from line 72 and 15I birds did not differ. Our data suggest that although differential resistance of inbred lines 72, 15I and C.B12 to APEC O1 challenge is apparent, it is dependent on the infectious dose. Research Highlights Lines 15I and C.B12 are more susceptible than line 72 to a high dose of APEC O1. Differential resistance is dose-dependent in lines 15I and 72. Phagocytic and bactericidal activity is similar and dose independent.


Assuntos
Galinhas , Resistência à Doença , Infecções por Escherichia coli/veterinária , Escherichia coli/imunologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Sacos Aéreos/microbiologia , Animais , Animais Endogâmicos , Anticorpos Heterófilos/imunologia , Carga Bacteriana , Relação Dose-Resposta Imunológica , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Macrófagos/imunologia , Masculino , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
14.
Front Genet ; 9: 528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534137

RESUMO

Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an intestinal disease with substantial economic impact. With the use of anticoccidial drugs under public and political pressure, and the comparatively higher cost of live-attenuated vaccines, an attractive complementary strategy for control is to breed chickens with increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads to complete immunity against challenge with homologous strains, but only partial resistance to challenge with antigenically diverse heterologous strains. We investigate the genetic architecture of avian resistance to E. maxima primary infection and heterologous strain secondary challenge using White Leghorn populations of derived inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross population was infected with E. maxima Houghton (H) strain, followed 3 weeks later by E. maxima Weybridge (W) strain challenge, while a backcross population received a single E. maxima W infection. The phenotypes measured were parasite replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal tissue), intestinal lesion score (gross pathology, scale 0-4), and for the backcross only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density genome-wide DNA array (600K, Affymetrix). Genome-wide association study located associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross population, and a suggestive association on chromosome 1 following heterologous E. maxima W challenge in the intercross population. This mapped several megabases away from the quantitative trait locus (QTL) linked to the backcross primary W strain infection, suggesting different underlying mechanisms for the primary- and heterologous secondary- responses. Underlying pathways for those genes located in the respective QTL for resistance to primary infection and protection against heterologous challenge were related mainly to immune response, with IL-10 signaling in the backcross primary infection being the most significant. Additionally, the identified markers associated with IL-10 levels exhibited significant additive genetic variance. We suggest this is a phenotype of interest to the outcome of challenge, being scalable in live birds and negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for sampling (qPCR).

15.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463512

RESUMO

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Assuntos
Galinhas/genética , Coccidiose/veterinária , Eimeria tenella/patogenicidade , Interleucina-10/sangue , Animais , Peso Corporal/genética , Ceco/patologia , Coccidiose/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interleucina-10/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/genética , Aumento de Peso/genética
16.
Nat Sustain ; 1(10): 574-582, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30411000

RESUMO

Village chickens are ubiquitous in smallholder farming systems, contributing to household, local and national economies under diverse environmental, economic and cultural settings. However, they are raised in challenging environments where productivity is low while mortality is high. There is much interest in utilizing indigenous genetic resources to produce a chicken resilient to its environment, whilst providing the basis of an economically sustainable enterprise. Globally, however, a wide variety of interventions have so far proved unable to deliver sustainable improvements. Here, we show that regional differences in trait preferences and parasite burden are associated with distinct chicken genepools, likely in response to interacting natural and human-driven (economic and social) selection pressures. Drivers of regional differences include marketing opportunities, cultural preferences, agro-ecologies and parasite populations, and are evident in system adaptations, such as management practices, population dynamics and bird genotypes. Our results provide sound multidisciplinary evidence to support previous observations that sustainable poultry development interventions for smallholder farmers, including breeding programs, should be locally tailored and designed for flexible implementation.

17.
Vet Res ; 49(1): 104, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305141

RESUMO

The respiratory tract is a key organ for many avian pathogens as well as a major route for vaccination in the poultry industry. To improve immune responses after vaccination of chickens through increased uptake of vaccines and targeting to antigen presenting cells, a better understanding of the avian respiratory immune system is required. Transgenic MacReporter birds were used expressing a reporter gene (eGFP or mApple) under the control of the CSF1R promoter and enhancer in cells of the mononuclear phagocyte (MNP) lineage to visualize the ontogeny of the lymphoid tissue, macrophages and dendritic cells, in the trachea, lung and air sac of birds from embryonic day 18-63 weeks of age. Small aggregates of CSF1R-transgene+ cells start to form at the openings of the secondary bronchi at 1 week of age, indicative of the early development of the organised bronchus-associated lymphoid tissue. Immunohistochemical staining revealed subpopulations of MNPs in the lung, based on expression of CSF1R-transgene, CD11, TIM4, LAMP1, and MHC II. Specialised epithelial cells or M cells covering the bronchus-associated lymphoid tissue expressed CSF1R-transgene and type II pneumocytes expressed LAMP1 suggesting that these epithelial cells are phagocytic and transcytose antigen. Highly organised lymphoid tissue was seen in trachea from 4 weeks onwards. Throughout the air sacs at all ages, CSF1R-transgene+ cells were scattered and at later stages, CSF1R-transgene+ cells lined capillaries. These results will serve as a base for further functional characterization of macrophages and dendritic cells and their role in respiratory diseases and vaccine responses.


Assuntos
Galinhas/genética , Galinhas/imunologia , Macrófagos/imunologia , Monócitos/metabolismo , Sacos Aéreos/imunologia , Sacos Aéreos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/metabolismo , Galinhas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Traqueia/imunologia , Traqueia/metabolismo
18.
Poult Sci ; 97(12): 4167-4176, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982748

RESUMO

Campylobacter is the leading bacterial cause of foodborne diarrheal illness in humans and source attribution studies unequivocally identify handling or consumption of poultry meat as a key risk factor. Campylobacter colonizes the avian intestines in high numbers and rapidly spreads within flocks. A need therefore exists to devise strategies to reduce Campylobacter populations in poultry flocks. There has been a great deal of research aiming to understand the epidemiology and transmission characteristics of Campylobacter in poultry as a means to reduce carriage rates in poultry and reduce infection in humans. One potential strategy for control is the genetic selection of poultry for increased resistance to colonization by Campylobacter. The potential for genetic control of colonization has been demonstrated in inbred populations following experimental challenge with Campylobacter where quantitative trait loci associated with resistance have been identified. Currently in the literature there is no information of the genetic basis of Campylobacter colonization in commercial broiler lines and it is unknown whether these QTL are found in commercial broiler lines. The aim of this study was to estimate genetic parameters associated with Campylobacter load and genetic correlations with gut health and production traits following natural exposure of broiler chickens to Campylobacter.The results from the analysis show a low but significant heritability estimate (0.095 ± 0.037) for Campylobacter load which indicates a limited genetic basis and that non-genetic factors have a greater influence on the level of Campylobacter found in the broiler chicken.Furthermore, through examination of macroscopic intestinal health and absorptive capacity, our study indicated that Campylobacter has no detrimental effects on intestinal health and bird growth following natural exposure in the broiler line under study. These data indicate that whilst there is a genetic component to Campylobacter colonization worthy of further investigation, there is a large proportion of phenotypic variance under the influence of non-genetic effects. As such the control of Campylobacter will require understanding and manipulation of non-genetic host and environmental factors.


Assuntos
Carga Bacteriana , Infecções por Campylobacter/veterinária , Campylobacter/fisiologia , Galinhas , Doenças das Aves Domésticas/genética , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/microbiologia , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Intestinos , Fenótipo , Doenças das Aves Domésticas/microbiologia
19.
Vet Immunol Immunopathol ; 199: 15-21, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29678225

RESUMO

Toll-like receptor (TLR) ligands (TLR-Ls) are critical activators of immunity and are successfully being developed as vaccine adjuvants in both mammals and birds. In this study, we investigated the synergistic effect of co-stimulation of membrane and endosomal TLRs on the innate immune responses using chicken bone marrow-derived macrophages (BMMs), and studied the effect of age on the induction of innate responses. BMMs from 1 and 4-week-old birds were stimulated with Pam3Cys-SK4 (PCSK; TLR2), synthetic monophosphoryl lipid A (MPLA), Di[3-deoxy-d-manno-octulosonyl]-lipid A ammonium salt (KLA; TLR4), Gardiquimod, Resiquimod (R848; TLR7), CpG class B and C (TLR21). Nitric oxide (NO) production and mRNA levels of IL-1ß, IL-10 and IL-12p40 showed macrophages from 4-week-old birds showed more sensitive responses compared to 1-week-old birds. The most potent TLR-Ls, PCSK, MPLA and CpG B were used to study the effect of co-stimulation on macrophages. Co-stimulation with TLR21 and TLR4 synergistically up-regulated inflammatory-related genes, as well as NO production. However, incubation of splenocytes with PCSK, MPLA and CpG B did not induce cell proliferation. Moreover, treatment with CpG B led to significant cell death.


Assuntos
Imunidade Inata/imunologia , Receptor 4 Toll-Like/imunologia , Receptores Toll-Like/imunologia , Fatores Etários , Animais , Galinhas/imunologia , Endossomos/imunologia , Imunidade Inata/efeitos dos fármacos , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Lipopeptídeos/farmacologia , Macrófagos/imunologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Receptor 4 Toll-Like/efeitos dos fármacos , Receptores Toll-Like/efeitos dos fármacos
20.
J Gen Virol ; 99(3): 321-327, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458670

RESUMO

Chicken anaemia virus (CAV) is a lymphotropic virus that causes anaemia and immunosuppression in chickens. Previously, we proposed that CAV evades host antiviral responses in vivo by disrupting T-cell signalling, but the precise cellular targets and modes of action remain elusive. In this study, we examined gene expression in Marek's disease virus-transformed chicken T-cell line MSB-1 after infection with CAV using both a custom 5K immune-focused microarray and quantitative real-time PCR at 24, 48 and 72 h post-infection. The data demonstrate an intricate equilibrium between CAV and the host gene expression, displaying subtle but significant modulation of transcripts involved in the T-cell, inflammation and NF-κB signalling cascades. CAV efficiently blocked the induction of type-I interferons and interferon-stimulated genes at 72 h. The cell expression pattern implies that CAV subverts host antiviral responses and that the transformed environment of MSB-1 cells offers an opportunistic advantage for virus growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...