Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 27(5): 055101, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26670636

RESUMO

Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes.

2.
Small ; 11(8): 896-904, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25504784

RESUMO

Colloidal particles with fluorescence read-out are commonly used as sensors for the quantitative determination of ions. Calcium, for example, is a biologically highly relevant ion in signaling, and thus knowledge of its spatio-temporal distribution inside cells would offer important experimental data. However, the use of particle-based intracellular sensors for ion detection is not straightforward. Important associated problems involve delivery and intracellular location of particle-based fluorophores, crosstalk of the fluorescence read-out with pH, and spectral overlap of the emission spectra of different fluorophores. These potential problems are outlined and discussed here with selected experimental examples. Potential solutions are discussed and form a guideline for particle-based intracellular imaging of ions.


Assuntos
Técnicas Biossensoriais , Cálcio/química , Nanotecnologia/métodos , Óptica e Fotônica , Benzoxazinas/química , Endocitose , Corantes Fluorescentes/química , Ouro/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Íons , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Tamanho da Partícula , Peptídeos/química , Polímeros/química
3.
Nano Lett ; 14(8): 4523-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972185

RESUMO

Successful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature. The high intensity enabled us to study the luminescence of single ZnO nanowires in detail, their behavior as a function of excitation power, waveguiding properties, and the decay time of the transition.


Assuntos
Európio/química , Luminescência , Nanofios/química , Óxido de Zinco/química
4.
Nanoscale Res Lett ; 6(1): 228, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21711734

RESUMO

Transients of Mn internal 3d5 luminescence in ZnS/Mn nanowires are strongly non-exponential. This non-exponential decay arises from an excitation transfer from the Mn ions to so-called killer centers, i.e., non-radiative defects in the nanostructures and is strongly related to the interplay of the characteristic length scales of the sample such as the spatial extensions, the distance between killer centers, and the distance between Mn ions. The transients of the Mn-related luminescence can be quantitatively described on the basis of a modified Förster model accounting for reduced dimensionality. Here, we confirm this modified Förster model by varying the number of killer centers systematically. Additional defects were introduced into the ZnS/Mn nanowire samples by irradiation with neon ions and by varying the Mn implantation or the annealing temperature. The temporal behavior of the internal Mn2+ (3d5) luminescence is recorded on a time scale covering almost four orders of magnitude. A correlation between defect concentration and decay behavior of the internal Mn2+ (3d5) luminescence is established and the energy transfer processes in the system of localized Mn ions and the killer centers within ZnS/Mn nanostructures is confirmed. If the excitation transfer between Mn ions and killer centers as well as migration effects between Mn ions are accounted for, and the correct effective dimensionality of the system is used in the model, one is able to describe the decay curves of ZnS/Mn nanostructures in the entire time window.

5.
Nature ; 446(7135): 522-5, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17392782

RESUMO

The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.

6.
Phys Rev Lett ; 92(7): 077206, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14995882

RESUMO

By visualization of the Barkhausen effect using magnetic force microscopy we are able to provide detailed information about the physical principles that govern the magnetization reversal of a granular ferromagnetic thin film with perpendicular anisotropy. Individual Barkhausen volumes are localized and distinguished as either newly nucleated or grown by domain wall propagation. The Gaussian size distribution of nucleated Barkhausen volumes indicates an uncorrelated random process, while grown Barkhausen volumes exhibit an inverse power law distribution, which points towards a critical behavior during domain wall motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...