Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 155: 113698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116252

RESUMO

Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-ß-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-ß-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-ß-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.


Assuntos
Perda Auditiva , Doença de Niemann-Pick Tipo C , Ototoxicidade , gama-Ciclodextrinas , Camundongos , Animais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/química , Maltose/uso terapêutico , Prótons , Colesterol/uso terapêutico , Excipientes/uso terapêutico , Perda Auditiva/tratamento farmacológico
2.
Biol Open ; 8(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31405829

RESUMO

The Dach1 gene is expressed in the inner ear of normal mouse embryos in the area that differentiates into the cochlear stria vascularis (SV). We hypothesised that Dach1 downregulation in the inner ear would lead to SV dysplasia. However, because Dach1 knockout is embryonic lethal in mice, the role of Dach1 in the inner ear is unclear. Here, we established inner ear-specific Dach1-knockdown mice and showed that Dach1 downregulation resulted in hearing loss, reduced endocochlear potential and secondary outer hair cell loss. There were no abnormalities in marginal cells and basal cells in the SV or spiral ligament in inner ear-specific Dach1-knockdown mature mice. However, intermediate cell dysplasia and thinning of the SV were observed. Moreover, dynamic changes in the expression of key genes related to the epithelial-mesenchymal transition were observed in the lateral wall of the cochlear epithelium, which differentiated into the SV in inner ear-specific Dach1-knockdown mice at embryonic stages. In summary, suppression of Dach1 expression in the inner ear caused the epithelial-mesenchymal transition in the lateral wall of cochlear epithelium, resulting in loss of intermediate cells in the SV and SV dysplasia.This article has an associated First Person interview with the first author of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...