Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0276483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395333

RESUMO

The aim of this preliminary study was to measure the systolic BP (SBP) and diastolic BP (DBP) and heart rate (HR) of radiological technologists by WD, and evaluate variation among individuals by worktime, day of the week, job, and workplace. Measurements were obtained using a wristwatch-type WD with optical measurement technology that can measure SBP and DBP every 10 minutes and HR every 30 minutes. SBP, DBP, and HR data obtained at baseline and during work time were combined with the hours of work, day of the week, job, and workplace recorded by the participants in 8 consecutive weeks. We calculated the mean, the ratio to baseline and coefficient of variation [CV(%)] for SBP, DBP, and HR. SBP, DBP, and HR values were significantly higher during work hours than at baseline (p<0.03). The ratio to baseline values ranged from 1.02 to 1.26 for SBP and from 1.07 to 1.30 for DBP. The ratio to baseline for SBP and DBP showed CV(%) of approximately 10% according to the day of the week and over the study period. For HR, ratio to baseline ranged from 0.95 to 1.29. The ratio of mean BP to baseline was >1.2 at the time of starting work, middle and after lunch, and at 14:00. The ratio to baseline of SBP were 1.2 or more for irradiation, equipment accuracy control, registration of patient data, dose verification and conference time, and were also working in CT examination room, treatment planning room, linac room, and the office. CV(%) of BP and HR were generally stable for all workplaces. WD measurements of SBP, DBP, and HR were higher during working hours than at baseline and varied by the individuals, work time, job, and workplace. This method may enable evaluation of unconscious workload in individuals.


Assuntos
Hipertensão , Dispositivos Eletrônicos Vestíveis , Humanos , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Determinação da Pressão Arterial/métodos
3.
EJNMMI Res ; 8(1): 83, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30128776

RESUMO

BACKGROUND: Recent developments in hardware and software for PET technologies have resulted in wide variations in basic performance. Multicentre studies require a standard imaging protocol and SUV harmonization to reduce inter- and intra-scanner variability in the SUV. The Japanese standardised uptake value (SUV) Harmonization Technology (J-Hart) study aimed to determine the applicability of vendor-neutral software on the SUV derived from positron emission tomography (PET) images. The effects of SUV harmonization were evaluated based on the reproducibility of several scanners and the repeatability of an individual scanner. Images were acquired from 12 PET scanners at nine institutions. PET images were acquired over a period of 30 min from a National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom containing six spheres of different diameters and an 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. The images were reconstructed to determine parameters for harmonization and to evaluate reproducibility. PET images with 2-min acquisition × 15 contiguous frames were reconstructed to evaluate repeatability. Various Gaussian filters (GFs) with full-width at half maximum (FWHM) values ranging from 1 to 15 mm in 1-mm increments were also applied using vendor-neutral software. The SUVmax of spheres was compared with the reference range proposed by the Japanese Society of Nuclear Medicine (JSNM) and the digital reference object (DRO) of the NEMA phantom. The coefficient of variation (CV) of the SUVmax determined using 12 PET scanners (CVrepro) was measured to evaluate reproducibility. The CV of the SUVmax determined from 15 frames (CVrepeat) per PET scanner was measured to determine repeatability. RESULTS: Three PET scanners did not require an additional GF for harmonization, whereas the other nine required additional FWHM values of GF ranging from 5 to 9 mm. The pre- and post-harmonization CVrepro of six spheres were (means ± SD) 9.45% ± 4.69% (range, 3.83-15.3%) and 6.05% ± 3.61% (range, 2.30-10.7%), respectively. Harmonization significantly improved reproducibility of PET SUVmax (P = 0.0055). The pre- and post-harmonization CVrepeat of nine scanners were (means ± SD) 6.59% ± 1.29% (range, 5.00-8.98%) and 4.88% ± 1.64% (range, 2.65-6.72%), respectively. Harmonization also significantly improved the repeatability of PET SUVmax (P < 0.0001). CONCLUSIONS: Harmonizing SUV using vendor-neutral software produced SUVmax for 12 scanners that fell within the JSNM reference range of a NEMA body phantom and improved SUVmax reproducibility and repeatability.

4.
Igaku Butsuri ; 32(1): 2-11, 2012.
Artigo em Japonês | MEDLINE | ID: mdl-24592671

RESUMO

We present a computer assisted learning (CAL) program to simulate head radiography. The program provides cone beam projections of a target volume, simulating three-dimensional computed tomography (CT) of a head phantom. The generated image is 512 x 512 x 512 pixels with each pixel 0.6 mm on a side. The imaging geometry, such as X-ray tube orientation and phantom orientation, can be varied. The graphical user interface (GUI) of the CAL program allows the study of the effects of varying the imaging geometry; each simulated projection image is shown quickly in an adjoining window. Simulated images with an assigned geometry were compared with the image obtained using the standard geometry in clinical use. The accuracy of the simulated image was verified through comparison with the image acquired using radiography of the head phantom, subsequently processed with a computed radiography system (CR image). Based on correlation coefficient analysis and visual assessment, it was concluded that the CAL program can satisfactorily simulate the CR image. Therefore, it should be useful for the training of head radiography.


Assuntos
Instrução por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Cabeça/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Tecnologia Radiológica/educação , Humanos , Posicionamento do Paciente , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...