Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5634, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221373

RESUMO

Femtosecond (fs) x-ray pulses are a key tool to study the structure and dynamics of matter on its natural length and time scale. To complement radio-frequency accelerator-based large-scale facilities, novel laser-based mechanisms hold promise for compact laboratory-scale x-ray sources. Laser-plasma driven undulator radiation in particular offers high peak-brightness, optically synchronized few-fs pulses reaching into the few-nanometer (nm) regime. To date, however, few experiments have successfully demonstrated plasma-driven undulator radiation. Those that have, typically operated at single and comparably long wavelengths. Here we demonstrate plasma-driven undulator radiation with octave-spanning tuneability at discrete wavelengths reaching from 13 nm to 4 nm. Studying spontaneous undulator radiation is an important step towards a plasma-driven free-electron laser. Our specific setup creates a photon pulse, which closely resembles the plasma electron bunch length and charge profile and thus might enable novel methods to characterize the longitudinal electron phase space.

2.
Phys Rev Lett ; 109(11): 113901, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005628

RESUMO

We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wave packet is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave packet, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.

3.
Phys Rev Lett ; 109(23): 233904, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368205

RESUMO

We bring the methodology of orienting polar molecules together with the phase sensitivity of high harmonic spectroscopy to experimentally compare the phase difference of attosecond bursts of radiation emitted upon electron recollision from different ends of a polar molecule. This phase difference has an impact on harmonics from aligned polar molecules, suppressing emission from the molecules parallel to the driving laser field while favoring the perpendicular ones. For oriented molecules, we measure the amplitude ratio of even to odd harmonics produced when intense light irradiates CO molecules and determine the degree of orientation and the phase difference of attosecond bursts using molecular frame ionization and recombination amplitudes. The sensitivity of the high harmonic spectrum to subtle phase differences in the emitted radiation makes it a detailed probe of polar molecules and will drive major advances in the theory of high harmonic generation.

4.
Phys Rev Lett ; 103(7): 073902, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19792645

RESUMO

Using longer wavelength laser drivers for high harmonic generation is desirable because the highest extreme ultraviolet frequency scales as the square of the wavelength. Recent numerical studies predict that high harmonic efficiency falls dramatically with increasing wavelength, with a very unfavorable lambda(-(5-6)) scaling. We performed an experimental study of the high harmonic yield over a wavelength range of 800-1850 nm. A thin gas jet was employed to minimize phase matching effects, and the laser intensity and focal spot size were kept constant as the wavelength was changed. Ion yield was simultaneously measured so that the total number of emitting atoms was known. We found that the scaling at constant laser intensity is lambda(-6.3+/-1.1) in Xe and lambda(-6.5+/-1.1) in Kr over the wavelength range of 800-1850 nm, somewhat worse than the theoretical predictions.

5.
Phys Rev Lett ; 98(20): 203007, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17677693

RESUMO

The effects of electronic structure and symmetry are observed in laser driven high-order harmonic generation for laser aligned conjugated polyatomic molecular systems. The dependence of the harmonic yield on the angle between the molecular axis and the polarization of the driving laser field is seen to contain the fingerprint of the highest occupied molecular orbitals in acetylene and allene, a good quantitative agreement with calculations employing the strong field approximation was found. These measurements support the extension of the recently proposed molecular orbital imaging techniques beyond simple diatomic molecules to larger molecular systems.

6.
Phys Rev Lett ; 95(15): 153902, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16241726

RESUMO

We experimentally investigate the process of intramolecular quantum interference in high-order harmonic generation in impulsively aligned CO2 molecules. The recombination interference effect is clearly seen through the order dependence of the harmonic yield in an aligned sample. The experimental results can be well modeled assuming that the effective de Broglie wavelength of the returning electron wave is not significantly altered by the Coulomb field of the molecular ion. We demonstrate that such interference effects can be effectively controlled by changing the ellipticity of the driving laser field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...