Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6616): 175-180, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227996

RESUMO

Deciding whether to grow or to divert energy to stress responses is a major physiological trade-off for plants surviving in fluctuating environments. We show that three leucine-rich repeat receptor kinases (LRR-RKs) act as direct ligand-perceiving receptors for PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides and mediate switching between two opposing pathways. By contrast to known LRR-RKs, which activate signaling upon ligand binding, PSY receptors (PSYRs) activate the expression of various genes encoding stress response transcription factors upon depletion of the ligands. Loss of PSYRs results in defects in plant tolerance to both biotic and abiotic stresses. This ligand-deprivation-dependent activation system potentially enables plants to exert tuned regulation of stress responses in the tissues proximal to metabolically dysfunctional damaged sites where ligand production is impaired.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Repetições Ricas em Leucina , Peptídeos , Estresse Fisiológico , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas , Ligantes , Peptídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Repetições Ricas em Leucina/genética , Proteínas de Repetições Ricas em Leucina/metabolismo
2.
Nat Commun ; 11(1): 1404, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179752

RESUMO

Selfing is a frequent evolutionary trend in angiosperms, and is a suitable model for studying the recurrent patterns underlying adaptive evolution. Many plants avoid self-fertilization by physiological processes referred to as self-incompatibility (SI). In the Brassicaceae, direct and specific interactions between the male ligand SP11/SCR and the female receptor kinase SRK are required for the SI response. Although Arabidopsis thaliana acquired autogamy through loss of these genes, molecular evolution contributed to the spread of self-compatibility alleles requires further investigation. We show here that in this species, dominant SRK silencing genes have evolved at least twice. Different inverted repeat sequences were found in the relic SRK region of the Col-0 and C24 strains. Both types of inverted repeats suppress the functional SRK sequence in a dominant fashion with different target specificities. It is possible that these dominant suppressors of SI contributed to the rapid fixation of self-compatibility in A. thaliana.


Assuntos
Arabidopsis/fisiologia , Flores/genética , Autoincompatibilidade em Angiospermas , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Evolução Molecular , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Nat Plants ; 1: 15128, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250681

RESUMO

Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca(2+) influx into stigma papilla cells mediates self-incompatibility signalling. Using self-incompatible Arabidopsis thaliana expressing SP11/SCR and SRK, we found that self-pollination specifically induced an increase in cytoplasmic Ca(2+) ([Ca(2+)]cyt) in papilla cells. Direct application of SP11/SCR to the papilla cell protoplasts induced Ca(2+) increase, which was inhibited by D-(-)-2-amino-5-phosphonopentanoic acid (AP-5), a glutamate receptor channel blocker. An artificial increase in [Ca(2+)]cyt in papilla cells arrested wild-type (WT) pollen hydration. Treatment of papilla cells with AP-5 interfered with self-incompatibility, and Ca(2+) increase on the self-incompatibility response was reduced in the glutamate receptor-like channel (GLR) gene mutants. These results suggest that Ca(2+) influx mediated by GLR is the essential self-incompatibility response leading to self-pollen rejection.

4.
J Exp Bot ; 65(4): 939-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24376255

RESUMO

Self-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn. campestris) with different CO2 sensitivity. Physiological examination using X-ray microanalysis suggested that SI breakdown in the CO2-sensitive line was accompanied by a significant accumulation of calcium at the pollen-stigma interface. Pre-treatment of pollen or pistil with CO2 gas before pollination showed no effect on the SI reaction, suggesting that some physiological process after pollination is necessary for SI to be overcome. Genetic analyses using F1 progeny of a CO2-sensitive × CO2-insensitive cross suggested that CO2 sensitivity is a semi-dominant trait in these lines. Analysis of F2 progeny suggested that CO2 sensitivity could be a quantitative trait, which is controlled by more than one gene. Quantitative trait locus (QTL) analyses identified two major loci, BrSIO1 and BrSIO2, which work additively in overcoming SI during CO2 treatment. No QTL was detected at the loci previously shown to affect SI stability, suggesting that CO2 sensitivity is determined by novel genes. The QTL data presented here should be useful for determining the responsible genes, and for the marker-assisted selection of desirable parental lines with stable but CO2-sensitive SI in F1 hybrid breeding.


Assuntos
Brassica rapa/fisiologia , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Autoincompatibilidade em Angiospermas/genética , Alelos , Brassica rapa/citologia , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Quimera , Mapeamento Cromossômico , Microanálise por Sonda Eletrônica , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Ligação Genética , Genótipo , Endogamia , Fenótipo , Proteínas de Plantas/genética , Tubo Polínico/citologia , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/genética , Tubo Polínico/fisiologia , Polinização , Polimorfismo Genético , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia
5.
Plant Cell ; 19(12): 3961-73, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18065692

RESUMO

Many flowering plants possess systems of self-incompatibility (SI) to prevent inbreeding. In Brassica, SI recognition is controlled by the multiallelic gene complex (S-haplotypes) at the S-locus, which encodes both the male determinant S-locus protein 11 (SP11/SCR) and the female determinant S-receptor kinase (SRK). Upon self-pollination, the S-haplotype-specific interaction between the pollen-borne SP11 and the cognate stigmatic SRK receptor induces SI signaling in the stigmatic papilla cell and results in rejection of the self-pollen. Our genetic analysis of a self-compatible mutant revealed the involvement of a cytoplasmic protein kinase, M-locus protein kinase (MLPK), in the SI signaling, but its exact physiological function remains unknown. In this study, we identified two different MLPK transcripts, MLPKf1 and MLPKf2, which are produced using alternative transcriptional initiation sites and encode two isoforms that differ only at the N termini. While MLPKf1 and MLPKf2 exhibited distinct expression profiles, both were expressed in papilla cells. MLPKf1 localizes to the plasma membrane through its N-terminal myristoylation motif, while MLPKf2 localizes to the plasma membrane through its N-terminal hydrophobic region. Although both MLPKf1 and MLPKf2 could independently complement the mlpk/mlpk mutation, their mutant forms that lack the plasma membrane localization motifs failed to complement the mutation. Furthermore, a bimolecular fluorescence complementation assay revealed direct interactions between SRK and the MLPK isoforms in planta. These results suggest that MLPK isoforms localize to the papilla cell membrane and interact directly with SRK to transduce SI signaling.


Assuntos
Brassica rapa/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hibridização In Situ , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Genes Genet Syst ; 78(5): 383-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14676429

RESUMO

The repeating units of the histone gene cluster containing the H1, H2A, H2B and H4 genes were amplified by PCR from the Drosophila melanogaster species subgroup, i.e., D. yakuba, D. erecta, D. sechellia, D. mauritiana, D. teissieri and D. orena. The PCR products were cloned and their nucleotide sequences of about 4.6-4.8kbp were determined to elucidate the mechanism of molecular evolution of the histone gene family. The heterogeneity among the histone gene repeating units was 0.6% and 0.7% for D. yakuba and D. sechellia, respectively, indicating the same level of heterogeneity as in the H3 gene region of D. melanogaster. Divergence of the genes among species even in the most closely related ones was much greater than the heterogeneity among family members, indicating a concerted mode of evolution for the histone gene repeating units. Among the species in the D. melanogaster species subgroup, the histone gene regions as well as 3rd codon position of the coding region showed nearly the same GC contents. These results suggested that the previous conclusion on analysis of the H3 gene regions, the gene family evolution in a concerted fashion, holds true for the whole histone gene repeating unit.


Assuntos
Drosophila melanogaster/genética , Histonas/genética , Família Multigênica , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Composição de Bases , Proteínas de Drosophila/genética , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...