Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165520, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381994

RESUMO

Epidermal desquamation involves a finely-tuned proteolytic cascade ensuring the regulated cleavage of desmosomes that releases old stratum corneum outermost layers. Although the roles of desmosomes in normal physiology are well-established, their putative involvement in cancer remains unexplored. The KLK5 protease is thought of having fundamental roles in epidermal proteolysis and homeostasis, and its aberrant activity has been linked to skin pathologies. We found that deletion of Klk5 results in significantly higher numbers of lengthier desmosomes and enhanced skin strength. Klk5-/- mice retained normal skin barrier function and are resistant to chemically-induced skin tumorigenesis. The resistance to tumorigenesis was not due to inhibition of inflammation, and on the contrary, absence of Klk5 increased the TPA-induced inflammatory skin response. We found that increased desmosomes and reduced proteolysis prevent oncogenic signaling by capturing ß-catenin into the cytoplasm and facilitate epidermal keratinocyte apoptosis, thus, inhibiting tumor initiation. We highlight that the skin ultrastructure affects early neoplastic transformation by modulating intracellular signaling and suggest that tissue reinforcement provides a novel mode of tumor suppression.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Calicreínas/genética , Neoplasias Cutâneas/genética , Animais , Carcinogênese/patologia , Desmossomos/genética , Desmossomos/patologia , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...