Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7535, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534636

RESUMO

Despite substantial efforts to control locusts they remain periodically a major burden in Africa, causing severe yield loss and hence loss of food and income. Distribution maps indicating the value of the basic reproduction number R0 was used to identify areas where an insect pest can be controlled by a natural enemy. A dynamic process-based mathematical model integrating essential features of a natural enemy and its interaction with the pest is used to generate R0 risk maps for insect pest outbreaks, using desert locust and the entomopathogenic fungus Metarhizium acridum (Synn. Metarhizium anisoliae var. acridum) as a case study. This approach provides a tool for evaluating the impact of climatic variables such as temperature and relative humidity and mapping spatial variability on the efficacy of M. acridum as a biocontrol agent against desert locust invasion in Africa. Applications of M. acridum against desert locust in a few selected African countries including Morocco, Kenya, Mali, and Mauritania through monthly spatial projection of R0 maps for the prevailing climatic condition are illustrated. By combining mathematical modeling with a geographic information system in a spatiotemporal projection as we do in this study, the field implementation of microbial control against locust in an integrated pest management system may be improved. Finally, the practical utility of this model provides insights that may improve the timing of pesticide application in a selected area where efficacy is highly expected.


Assuntos
Gafanhotos , Metarhizium , Animais , Gafanhotos/microbiologia , Quênia , Temperatura
2.
Int J Health Geogr ; 17(1): 2, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338736

RESUMO

BACKGROUND: Malaria is highly sensitive to climatic variables and is strongly influenced by the presence of vectors in a region that further contribute to parasite development and sustained disease transmission. Mathematical analysis of malaria transmission through the use and application of the value of the basic reproduction number (R0) threshold is an important and useful tool for the understanding of disease patterns. METHODS: Temperature dependence aspect of R0 obtained from dynamical mathematical network model was used to derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. Model validation was conducted using MARA map and the Annual Plasmodium falciparum Entomological Inoculation Rates for Africa. RESULTS: The inclusion of the coupling between patches in dynamical model seems to have no effects on the estimate of the optimal temperature (about 25 °C) for malaria transmission. In patches environment, we were able to establish a threshold value (about α = 5) representing the ratio between the migration rates from one patch to another that has no effect on the magnitude of R0. Such findings allow us to limit the production of the spatial distribution map of R0 to a single patch model. Future projections using temperature changes indicated a shift in malaria transmission areas towards the southern and northern areas of Africa and the application of the interventions scenario yielded a considerable reduction in transmission within malaria endemic areas of the continent. CONCLUSIONS: The approach employed here is a sole study that defined the limits of contemporary malaria transmission, using R0 derived from a dynamical mathematical model. It has offered a unique prospect for measuring the impacts of interventions through simple manipulation of model parameters. Projections at scale provide options to visualize and query the results, when linked to the human population could potentially deliver adequate highlight on the number of individuals at risk of malaria infection across Africa. The findings provide a reasonable basis for understanding the fundamental effects of malaria control and could contribute towards disease elimination, which is considered as a challenge especially in the context of climate change.


Assuntos
Mudança Climática , Sistemas de Informação Geográfica , Malária/epidemiologia , Malária/transmissão , Modelos Teóricos , África/epidemiologia , Animais , Mudança Climática/estatística & dados numéricos , Sistemas de Informação Geográfica/estatística & dados numéricos , Mapeamento Geográfico , Humanos , Malária/prevenção & controle , Mosquitos Vetores , Plasmodium falciparum/isolamento & purificação , Prevalência
3.
Chaos ; 26(5): 053111, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27249951

RESUMO

Inspired by standard electrophysiological models of microtubules, a discrete nonlinear equation for ionic wave propagation that incorporates a negative nonlinear resistance is presented. The conditions for wave propagation in forbidden band gap are analyzed without and with dissipation. The nonlinear response manifold method is used to determine the supratransmission threshold of the case of study without dissipation. This threshold is found to be similar to the value obtained by analytical methods. With the dissipation, the monitoring of the accumulated energy is used to estimate the infratransmission threshold. It appears that the value of the supratransmission threshold can be lower than the value of the infratransmission threshold. The system is found to amplify significantly the amplitude of the input signal, thus confirming known experimental results. Nevertheless, a proper choice of the parameter of the nonlinear resistance is required for further validation of our results. A possible biological implication of the obtained results is presented.


Assuntos
Eletricidade , Microtúbulos/metabolismo , Modelos Biológicos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...